nesticot commited on
Commit
2b7b43f
·
verified ·
1 Parent(s): 96cb552

Upload 7 files

Browse files
stuff_model/__pycache__/feature_engineering.cpython-39.pyc ADDED
Binary file (2.38 kB). View file
 
stuff_model/__pycache__/stuff_apply.cpython-39.pyc ADDED
Binary file (1.29 kB). View file
 
stuff_model/feature_engineering.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import polars as pl
2
+ import numpy as np
3
+
4
+ def feature_engineering(df: pl.DataFrame) -> pl.DataFrame:
5
+ # Extract the year from the game_date column
6
+ df = df.with_columns(
7
+ pl.col('game_date').str.slice(0, 4).alias('year')
8
+ )
9
+
10
+ df = df.with_columns([
11
+
12
+ (-(pl.col('vy0')**2 - (2 * pl.col('ay') * (pl.col('y0') - 17/12)))**0.5).alias('vy_f'),
13
+ ])
14
+
15
+ df = df.with_columns([
16
+ ((pl.col('vy_f') - pl.col('vy0')) / pl.col('ay')).alias('t'),
17
+ ])
18
+
19
+ df = df.with_columns([
20
+ (pl.col('vz0') + (pl.col('az') * pl.col('t'))).alias('vz_f'),
21
+ (pl.col('vx0') + (pl.col('ax') * pl.col('t'))).alias('vx_f')
22
+ ])
23
+
24
+ df = df.with_columns([
25
+ (-np.arctan(pl.col('vz_f') / pl.col('vy_f')) * (180 / np.pi)).alias('vaa'),
26
+ (-np.arctan(pl.col('vx_f') / pl.col('vy_f')) * (180 / np.pi)).alias('haa')
27
+ ])
28
+
29
+ # Mirror horizontal break for left-handed pitchers
30
+ df = df.with_columns(
31
+ pl.when(pl.col('pitcher_hand') == 'L')
32
+ .then(-pl.col('ax'))
33
+ .otherwise(pl.col('ax'))
34
+ .alias('ax')
35
+ )
36
+
37
+ # Mirror horizontal break for left-handed pitchers
38
+ df = df.with_columns(
39
+ pl.when(pl.col('pitcher_hand') == 'L')
40
+ .then(-pl.col('hb'))
41
+ .otherwise(pl.col('hb'))
42
+ .alias('hb')
43
+ )
44
+
45
+ # Mirror horizontal release point for left-handed pitchers
46
+ df = df.with_columns(
47
+ pl.when(pl.col('pitcher_hand') == 'L')
48
+ .then(pl.col('x0'))
49
+ .otherwise(-pl.col('x0'))
50
+ .alias('x0')
51
+ )
52
+
53
+ # Define the pitch types to be considered
54
+ pitch_types = ['SI', 'FF', 'FC']
55
+
56
+ # Filter the DataFrame to include only the specified pitch types
57
+ df_filtered = df.filter(pl.col('pitch_type').is_in(pitch_types))
58
+
59
+ # Group by pitcher_id and year, then aggregate to calculate average speed and usage percentage
60
+ df_agg = df_filtered.group_by(['pitcher_id', 'year', 'pitch_type']).agg([
61
+ pl.col('start_speed').mean().alias('avg_fastball_speed'),
62
+ pl.col('az').mean().alias('avg_fastball_az'),
63
+ pl.col('ax').mean().alias('avg_fastball_ax'),
64
+ pl.len().alias('count')
65
+ ])
66
+
67
+ # Sort the aggregated data by count and average fastball speed
68
+ df_agg = df_agg.sort(['count', 'avg_fastball_speed'], descending=[True, True])
69
+ df_agg = df_agg.unique(subset=['pitcher_id', 'year'], keep='first')
70
+
71
+ # Join the aggregated data with the main DataFrame
72
+ df = df.join(df_agg, on=['pitcher_id', 'year'])
73
+
74
+ # If no fastball, use the fastest pitch for avg_fastball_speed
75
+ df = df.with_columns(
76
+ pl.when(pl.col('avg_fastball_speed').is_null())
77
+ .then(pl.col('start_speed').max().over('pitcher_id'))
78
+ .otherwise(pl.col('avg_fastball_speed'))
79
+ .alias('avg_fastball_speed')
80
+ )
81
+
82
+ # If no fastball, use the fastest pitch for avg_fastball_az
83
+ df = df.with_columns(
84
+ pl.when(pl.col('avg_fastball_az').is_null())
85
+ .then(pl.col('az').max().over('pitcher_id'))
86
+ .otherwise(pl.col('avg_fastball_az'))
87
+ .alias('avg_fastball_az')
88
+ )
89
+
90
+ # If no fastball, use the fastest pitch for avg_fastball_ax
91
+ df = df.with_columns(
92
+ pl.when(pl.col('avg_fastball_ax').is_null())
93
+ .then(pl.col('ax').max().over('ax'))
94
+ .otherwise(pl.col('avg_fastball_ax'))
95
+ .alias('avg_fastball_ax')
96
+ )
97
+
98
+ # Calculate pitch differentials
99
+ df = df.with_columns(
100
+ (pl.col('start_speed') - pl.col('avg_fastball_speed')).alias('speed_diff'),
101
+ (pl.col('az') - pl.col('avg_fastball_az')).alias('az_diff'),
102
+ (pl.col('ax') - pl.col('avg_fastball_ax')).abs().alias('ax_diff')
103
+ )
104
+
105
+ # Cast the year column to integer type
106
+ df = df.with_columns(
107
+ pl.col('year').cast(pl.Int64)
108
+ )
109
+
110
+
111
+
112
+ df = df.with_columns([
113
+ pl.lit('All').alias('all')
114
+ ])
115
+
116
+ # Calculate mound_to_release as 60.5 - extension
117
+ df = df.with_columns([
118
+ (60.5 - df["extension"]).alias("release_pos_y")
119
+ ])
120
+
121
+ # Calculate delta time (Δt)
122
+ delta_t = (df["release_pos_y"] - df["y0"]) / df["vy0"]
123
+
124
+ # Corrected back-calculation of release_pos_x and release_pos_z
125
+ df = df.with_columns([
126
+ (df["x0"] + df["vx0"] * delta_t + 0.5 * df["ax"] * delta_t ** 2).alias("release_pos_x"),
127
+ (df["z0"] + df["vz0"] * delta_t + 0.5 * df["az"] * delta_t ** 2).alias("release_pos_z")
128
+ ])
129
+
130
+
131
+
132
+
133
+ return df
stuff_model/lgbm_model_2020_2023.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41001a1acf6ce7dbe247f1b8b7e68a1bb1b112f39d080b7e95a83479e56cb7c1
3
+ size 3092328
stuff_model/stuff_apply.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import polars as pl
2
+ import joblib
3
+
4
+ model = joblib.load('stuff_model/lgbm_model_2020_2023.joblib')
5
+ # Read the values from the text file
6
+ with open('stuff_model/target_stats.txt', 'r') as file:
7
+ lines = file.readlines()
8
+ target_mean = float(lines[0].strip())
9
+ target_std = float(lines[1].strip())
10
+
11
+ # Define the features to be used for training
12
+ features = ['start_speed',
13
+ 'spin_rate',
14
+ 'extension',
15
+ 'az',
16
+ 'ax',
17
+ 'x0',
18
+ 'z0',
19
+ 'speed_diff',
20
+ 'az_diff',
21
+ 'ax_diff']
22
+
23
+
24
+ def stuff_apply(df:pl.DataFrame) -> pl.DataFrame:
25
+ # Filter the dataframe to include only the rows for the year 2024 and drop rows with null values in the specified features and target column
26
+ # df_test = df.drop_nulls(subset=features)
27
+ df_test = df.clone()
28
+
29
+ # Predict the target values for the 2024 data using the trained model
30
+ df_test = df_test.with_columns(
31
+ pl.Series(name="target", values=model.predict(df_test[features].to_numpy()))
32
+ )
33
+ # Standardize the target column to create a z-score
34
+ df_test = df_test.with_columns(
35
+ ((pl.col('target') - target_mean) / target_std).alias('target_zscore')
36
+ )
37
+
38
+ # Convert the z-score to tj_stuff_plus
39
+ df_test = df_test.with_columns(
40
+ (100 - (pl.col('target_zscore') * 10)).alias('tj_stuff_plus')
41
+ )
42
+
43
+ df_pitch_types = pl.read_csv('stuff_model/tj_stuff_plus_pitch.csv')
44
+
45
+ # Join the pitch type statistics with the main DataFrame based on pitch_type
46
+ df_pitch_all = df_test.join(df_pitch_types, left_on='pitch_type', right_on='pitch_type')
47
+
48
+ # Normalize pitch_grade values to a range between -0.5 and 0.5 based on the percentiles
49
+ df_pitch_all = df_pitch_all.with_columns(
50
+ ((pl.col('tj_stuff_plus') - pl.col('mean')) / pl.col('std')).alias('pitch_grade')
51
+ )
52
+
53
+ # Scale the pitch_grade values to a range between 20 and 80
54
+ df_pitch_all = df_pitch_all.with_columns(
55
+ (pl.col('pitch_grade') * 10 + 50).clip(20, 80)
56
+ )
57
+ return df_pitch_all
stuff_model/target_stats.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ 0.0034732498406374636
2
+ 0.006846752748626548
stuff_model/tj_stuff_plus_pitch.csv ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pitch_type,mean,std,median,min,max,percentile_1,percentile_99
2
+ ST,106.44784631565936,5.593943599731136,106.24878922952112,91.18894850636659,125.29541262167034,91.69322149368426,125.25688309207108
3
+ SV,103.73183202363764,3.001226780758946,103.50047554089315,93.3173875900245,111.34757479687066,93.32953434698274,111.33689503153641
4
+ SL,103.49296290610897,5.265572779780409,103.19144262214559,88.84957017284297,121.88798777026031,89.76670287371176,121.36013955239422
5
+ KC,101.8993919341341,4.271694896723436,100.79211889194949,93.69754063161618,119.4933202093256,93.75149298057133,119.38166236091195
6
+ All,99.9275100894791,5.01699442232884,99.65265124489378,84.73033633038408,116.94934527087541,86.65905811630736,116.7610246502804
7
+ CU,99.88832068607897,4.615228571103906,99.08993373693156,89.84495168337246,119.90089262632986,90.20429983334718,117.89567125997061
8
+ FC,98.83449547008738,5.811964883678063,98.54483029899575,83.20928731685326,119.78700324933075,83.34007602984008,118.21186533190846
9
+ FS,98.25541635267653,6.898952096824192,98.46204303842217,72.25450024197754,114.88400714657823,73.39595959354874,114.78967217449389
10
+ FO,98.15224613640243,1.081819065809178,99.94816563615653,94.0023252668585,100.50624750619224,94.0142169475971,100.50513134245217
11
+ FF,97.29024735737988,6.078459125845886,97.09670890504734,81.2230917971995,118.10419744965911,81.32311771953398,117.7938724746093
12
+ SC,97.27958020025409,1.2452898498180456,97.27958020025409,93.536223938276,101.02293646223218,93.54371065079995,101.01544974970822
13
+ CH,96.35866365133434,6.178939251378385,95.80884625564597,81.28802319264824,121.14136334013493,82.02275793969746,119.09639344796777
14
+ SI,95.14161603816645,4.9734372581529955,95.11657827702109,82.5850956341191,112.99618112461533,82.8856383780296,112.72626192694757
15
+ CS,93.97853627048322,0.0,93.97853627048322,93.97853627048322,93.97853627048322,93.97853627048322,93.97853627048322
16
+ KN,93.41890096234394,0.0,93.41890096234394,93.41890096234394,93.41890096234394,93.41890096234394,93.41890096234394