Update app.py
Browse files
app.py
CHANGED
@@ -1,153 +1,238 @@
|
|
1 |
import polars as pl
|
2 |
-
import
|
3 |
-
|
4 |
-
from shiny import App, reactive, render, ui
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
import matplotlib.ticker as tkr
|
7 |
-
import seaborn as sns
|
8 |
-
import adjustText
|
9 |
-
sns.set_style('whitegrid')
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#FFFFFF','#FFB000','#FE6100'])
|
14 |
|
15 |
-
|
16 |
|
17 |
-
x = np.arange(-30,90.5,.5)
|
18 |
-
y = np.arange(0,120.5,0.1)
|
19 |
|
20 |
-
xx, yy = np.meshgrid(x, y)
|
21 |
|
22 |
-
df = pl.DataFrame({'launch_angle': xx.ravel(), 'launch_speed': yy.ravel()})
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
)
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
)
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
|
52 |
-
def server(input, output, session):
|
53 |
-
# Store the coordinates in reactive values
|
54 |
-
x_coord = reactive.value(110)
|
55 |
-
y_coord = reactive.value(30)
|
56 |
-
|
57 |
-
@reactive.effect
|
58 |
-
@reactive.event(input.plot_click)
|
59 |
-
def _():
|
60 |
-
# Update reactive values when plot is clicked
|
61 |
-
click_data = input.plot_click()
|
62 |
-
if click_data is not None:
|
63 |
-
x_coord.set(click_data["x"])
|
64 |
-
y_coord.set(click_data["y"])
|
65 |
-
# Update the numeric inputs
|
66 |
-
ui.update_numeric("x_select", value=round(click_data["x"],1))
|
67 |
-
ui.update_numeric("y_select", value=round(click_data["y"],1))
|
68 |
-
|
69 |
-
@reactive.effect
|
70 |
-
@reactive.event(input.x_select, input.y_select)
|
71 |
-
def _():
|
72 |
-
# Update reactive values when numeric inputs change
|
73 |
-
x_coord.set(round(input.x_select(),1))
|
74 |
-
y_coord.set(round(input.y_select(),1))
|
75 |
-
|
76 |
-
|
77 |
-
@render.plot
|
78 |
-
def plot():
|
79 |
-
switch = input.flip_stat()
|
80 |
-
fig, ax = plt.subplots(1, 1, figsize=(9, 9))
|
81 |
-
|
82 |
-
|
83 |
-
if switch:
|
84 |
-
h = ax.hexbin(df['launch_speed'],
|
85 |
-
df['launch_angle'],
|
86 |
-
C=df['xwoba'],
|
87 |
-
gridsize=(40,25),
|
88 |
-
cmap=cmap_sum,
|
89 |
-
vmin=0.0,
|
90 |
-
vmax=2.0,)
|
91 |
-
bounds=[0.0,0.4,0.8,1.2,1.6,2.0]
|
92 |
-
fig.colorbar(h, ax=ax, label='xwOBA',format=tkr.FormatStrFormatter('%.3f'),shrink=0.5,
|
93 |
-
ticks=bounds)
|
94 |
-
|
95 |
-
else:
|
96 |
-
h = ax.hexbin(df['launch_speed'],
|
97 |
-
df['launch_angle'],
|
98 |
-
C=df['xslg'],
|
99 |
-
gridsize=(40,25),
|
100 |
-
cmap=cmap_sum,
|
101 |
-
vmin=0.0,
|
102 |
-
vmax=4.0,)
|
103 |
-
bounds=[0.0,0.5,1,1.5,2,2.5,3,3.5,4]
|
104 |
-
fig.colorbar(h, ax=ax, label='xSLG',format=tkr.FormatStrFormatter('%.3f'),shrink=0.5,
|
105 |
-
ticks=bounds)
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
ax.set_xlabel('Launch Speed')
|
110 |
-
ax.set_ylabel('Launch Angle')
|
111 |
-
if switch:
|
112 |
-
ax.set_title('Exit Velocity vs Launch Angle\nExpected Weighted On Base Average (xwOBA)\nBy: @TJStats, Data:MLB')
|
113 |
-
else:
|
114 |
-
ax.set_title('Exit Velocity vs Launch Angle\nExpected Total Bases (xSLG)\nBy: @TJStats, Data:MLB')
|
115 |
-
|
116 |
-
ax.grid(False)
|
117 |
-
ax.axis('square')
|
118 |
-
ax.set_xlim(0, 120)
|
119 |
-
ax.set_ylim(-30, 90)
|
120 |
|
121 |
-
|
122 |
-
y_select = input.y_select()
|
123 |
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
xwoba_value = (xwoba_model.predict_proba([[y_select,x_select]]) @ [0, 0.883, 1.244, 1.569, 2.004])[0]
|
130 |
-
texts = [ax.text(x_select+3, y_select+3, f'xwOBA: {xwoba_value:.3f}', color='black', fontsize=12, weight='bold',
|
131 |
-
zorder=1000, bbox=dict(facecolor='white', alpha=0.5, edgecolor='black'))]
|
132 |
-
|
133 |
-
else:
|
134 |
-
xwoba_value = (xwoba_model.predict_proba([[y_select,x_select]]) @ [0, 1, 2, 3, 4])[0]
|
135 |
-
texts = [ax.text(x_select+3, y_select+3, f'xSLG: {xwoba_value:.3f}', color='black', fontsize=12, weight='bold',
|
136 |
-
zorder=1000, bbox=dict(facecolor='white', alpha=0.5, edgecolor='black'))]
|
137 |
-
|
138 |
|
|
|
|
|
|
|
|
|
139 |
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
-
|
142 |
|
143 |
-
arrowprops=dict(arrowstyle='->', color='#DC267F'),avoid_self=True,
|
144 |
-
min_arrow_len =5)
|
145 |
-
# xwoba_value =
|
146 |
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
-
# ax.axis('square')
|
151 |
|
152 |
|
153 |
-
app = App(app_ui, server)
|
|
|
1 |
import polars as pl
|
2 |
+
import api_scraper
|
3 |
+
mlb_scrape = api_scraper.MLB_Scrape()
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
from stuff_model import *
|
6 |
+
from shiny import App, reactive, ui, render
|
7 |
+
from shiny.ui import h2, tags
|
8 |
+
from api_scraper import MLB_Scrape
|
9 |
+
import datetime
|
10 |
+
from stuff_model import feature_engineering as fe
|
11 |
+
from stuff_model import stuff_apply
|
12 |
+
from pytabulator import TableOptions, Tabulator, output_tabulator, render_tabulator, theme
|
13 |
+
theme.tabulator_site()
|
14 |
+
scraper = MLB_Scrape()
|
15 |
|
16 |
+
df_year_old_group = pl.read_parquet('pitch_data_agg_2024.parquet')
|
|
|
17 |
|
18 |
+
pitcher_old_dict = dict(zip(df_year_old_group['pitcher_id'],df_year_old_group['pitcher_name']))
|
19 |
|
|
|
|
|
20 |
|
|
|
21 |
|
|
|
22 |
|
23 |
+
app_ui = ui.page_fluid(
|
24 |
+
ui.card(
|
25 |
+
ui.card_header("2025 Spring Training Pitch Data App"),
|
26 |
+
ui.row(
|
27 |
+
ui.column(4,
|
28 |
+
ui.markdown("""This app generates a table which shows the 2025 Spring Training data.
|
29 |
|
30 |
+
* Differences are calculated based on 2024 regular season data
|
31 |
+
* If 2024 data does not exist for pitcher, 2023 Data is used
|
32 |
+
* If no difference exists, the pitch is labelled as a new pitch"""),
|
33 |
+
|
34 |
+
|
35 |
+
ui.input_action_button(
|
36 |
+
"refresh",
|
37 |
+
"Refresh Data",
|
38 |
+
class_="btn-primary",
|
39 |
+
width="100%"
|
40 |
+
)
|
41 |
+
),
|
42 |
+
ui.column(3,
|
43 |
+
ui.div(
|
44 |
+
"By: ",
|
45 |
+
ui.tags.a(
|
46 |
+
"@TJStats",
|
47 |
+
href="https://x.com/TJStats",
|
48 |
+
target="_blank"
|
49 |
+
)
|
50 |
+
),
|
51 |
+
ui.tags.p("Data: MLB"),
|
52 |
+
ui.tags.p(
|
53 |
+
ui.tags.a(
|
54 |
+
"Support me on Patreon for more baseball content",
|
55 |
+
href="https://www.patreon.com/TJ_Stats",
|
56 |
+
target="_blank"
|
57 |
+
)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
),
|
61 |
+
ui.navset_tab(
|
62 |
+
ui.nav("All Pitches",
|
63 |
+
output_tabulator("table_all")
|
64 |
+
),
|
65 |
+
)
|
66 |
+
)
|
67 |
)
|
68 |
|
69 |
+
def server(input, output, session):
|
70 |
+
@output
|
71 |
+
@render_tabulator
|
72 |
+
@reactive.event(input.refresh)
|
73 |
+
def table_all():
|
74 |
+
|
75 |
+
import polars as pl
|
76 |
+
df_spring = pl.read_parquet(f"hf://datasets/TJStatsApps/mlb_data/data/mlb_pitch_data_2025_spring.parquet")
|
77 |
+
|
78 |
+
|
79 |
+
date = datetime.datetime.now().date()
|
80 |
+
date_str = date.strftime('%Y-%m-%d')
|
81 |
+
# Initialize the scraper
|
82 |
+
|
83 |
+
|
84 |
+
game_list_input = (scraper.get_schedule(year_input=[int(date_str[0:4])], sport_id=[1], game_type=['S'])
|
85 |
+
.filter(pl.col('date') == date)['game_id'])
|
86 |
+
|
87 |
+
data = scraper.get_data(game_list_input)
|
88 |
+
df = scraper.get_data_df(data)
|
89 |
+
|
90 |
+
df_spring = pl.concat([df_spring, df]).sort('game_date', descending=True)
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
# df_year_old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb,df_aaa,df_a,df_afl])))
|
95 |
+
# df_year_2old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb_2023])))
|
96 |
+
df_spring_stuff = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_spring])))
|
97 |
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
import polars as pl
|
|
|
101 |
|
102 |
+
# Compute total pitches for each pitcher
|
103 |
+
df_pitcher_totals = df_spring_stuff.group_by("pitcher_id").agg(
|
104 |
+
pl.col("start_speed").count().alias("pitcher_total")
|
105 |
+
)
|
106 |
|
107 |
+
df_spring_group = df_spring_stuff.group_by(['pitcher_id', 'pitcher_name', 'pitch_type']).agg([
|
108 |
+
pl.col('start_speed').count().alias('count'),
|
109 |
+
pl.col('start_speed').mean().alias('start_speed'),
|
110 |
+
pl.col('ivb').mean().alias('ivb'),
|
111 |
+
pl.col('hb').mean().alias('hb'),
|
112 |
+
pl.col('release_pos_z').mean().alias('release_pos_z'),
|
113 |
+
pl.col('release_pos_x').mean().alias('release_pos_x'),
|
114 |
+
pl.col('extension').mean().alias('extension'),
|
115 |
+
pl.col('tj_stuff_plus').mean().alias('tj_stuff_plus'),
|
116 |
+
(pl.col('start_speed').filter(pl.col('batter_hand')=='L').count()).alias('rhh_count'),
|
117 |
+
(pl.col('start_speed').filter(pl.col('batter_hand')=='R').count()).alias('lhh_count')
|
118 |
+
])
|
119 |
|
120 |
+
# Join total pitches per pitcher to the grouped DataFrame on pitcher_id
|
121 |
+
df_spring_group = df_spring_group.join(df_pitcher_totals, on="pitcher_id", how="left")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
# Now calculate the pitch percent for each pitcher/pitch_type combination
|
124 |
+
df_spring_group = df_spring_group.with_columns(
|
125 |
+
(pl.col("count") / pl.col("pitcher_total")).alias("pitch_percent")
|
126 |
+
)
|
127 |
|
128 |
+
# Optionally, if you want the percentage of left/right-handed batters within the group:
|
129 |
+
df_spring_group = df_spring_group.with_columns([
|
130 |
+
(pl.col("rhh_count") / pl.col("pitcher_total")).alias("rhh_percent"),
|
131 |
+
(pl.col("lhh_count") / pl.col("pitcher_total")).alias("lhh_percent")
|
132 |
+
])
|
133 |
|
134 |
+
df_merge = df_spring_group.join(df_year_old_group,on=['pitcher_id','pitcher_name','pitch_type'],how='left',suffix='_old')
|
135 |
|
|
|
|
|
|
|
136 |
|
137 |
+
df_merge = df_merge.with_columns(
|
138 |
+
pl.col('pitcher_id').is_in(df_year_old_group['pitcher_id']).alias('exists_in_old')
|
139 |
+
)
|
140 |
+
|
141 |
+
df_merge = df_merge.with_columns(
|
142 |
+
pl.when(pl.col('start_speed_old').is_null() & pl.col('exists_in_old'))
|
143 |
+
.then(pl.lit("TRUE"))
|
144 |
+
.otherwise(pl.lit(None))
|
145 |
+
.alias("new_pitch")
|
146 |
+
)
|
147 |
+
|
148 |
+
import polars as pl
|
149 |
+
|
150 |
+
# Define the columns to subtract
|
151 |
+
cols_to_subtract = [
|
152 |
+
("start_speed", "start_speed_old"),
|
153 |
+
("ivb", "ivb_old"),
|
154 |
+
("hb", "hb_old"),
|
155 |
+
("release_pos_z", "release_pos_z_old"),
|
156 |
+
("release_pos_x", "release_pos_x_old"),
|
157 |
+
("extension", "extension_old"),
|
158 |
+
("tj_stuff_plus", "tj_stuff_plus_old")
|
159 |
+
]
|
160 |
+
|
161 |
+
df_merge = df_merge.with_columns([
|
162 |
+
# Step 1: Create _diff columns with the default value (e.g., 80) if old is null
|
163 |
+
pl.when(pl.col(old).is_null())
|
164 |
+
.then(pl.lit(10000)) # If old is null, assign 80 as the default
|
165 |
+
.otherwise(pl.col(new) - pl.col(old)) # Otherwise subtract old from new
|
166 |
+
.alias(new + "_diff")
|
167 |
+
for new, old in cols_to_subtract
|
168 |
+
])
|
169 |
+
|
170 |
+
# Step 2: Format the columns with (value (+diff)) - exclude brackets if diff is 80
|
171 |
+
df_merge = df_merge.with_columns([
|
172 |
+
pl.when(pl.col(new + "_diff").eq(10000)) # If diff is 80, no need to include brackets
|
173 |
+
.then(pl.col(new).round(1).cast(pl.Utf8)+'\n\t') # Just return the new value as string
|
174 |
+
.otherwise(
|
175 |
+
pl.col(new).round(1).cast(pl.Utf8) +
|
176 |
+
"\n(" +
|
177 |
+
pl.col(new + "_diff").round(1)
|
178 |
+
.map_elements(lambda x: f"{x:+.1f}") +
|
179 |
+
")"
|
180 |
+
).alias(new + "_formatted")
|
181 |
+
for new, _ in cols_to_subtract
|
182 |
+
])
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
percent_cols = ['pitch_percent', 'rhh_percent', 'lhh_percent']
|
190 |
+
|
191 |
+
df_merge = df_merge.with_columns([
|
192 |
+
(pl.col(col) * 100) # Convert to percentage
|
193 |
+
.round(1) # Round to 1 decimal
|
194 |
+
.map_elements(lambda x: f"{x:.1f}%") # Format as string with '%'
|
195 |
+
.alias(col + "_formatted")
|
196 |
+
for col in percent_cols
|
197 |
+
]).sort(['pitcher_id','count'],descending=True)
|
198 |
+
|
199 |
+
|
200 |
+
columns = [
|
201 |
+
{ "title": "Pitcher Name", "field": "pitcher_name", "width": 250, "headerFilter":"input" ,"frozen":True,},
|
202 |
+
{ "title": "Team", "field": "pitcher_team", "width": 100, "headerFilter":"input" ,"frozen":True,},
|
203 |
+
{ "title": "Pitch Type", "field": "pitch_type", "width": 125, "headerFilter":"input" ,"frozen":True,},
|
204 |
+
{ "title": "New Pitch?", "field": "new_pitch", "width": 125, "headerFilter":"input" ,"frozen":False,},
|
205 |
+
{ "title": "Pitches", "field": "count", "width": 100 , "headerFilter":"input"},
|
206 |
+
{ "title": "Pitch%", "field": "pitch_percent_formatted", "width": 100, "headerFilter":"input"},
|
207 |
+
{ "title": "RHH%", "field": "rhh_percent_formatted", "width": 100, "headerFilter":"input"},
|
208 |
+
{ "title": "LHH%", "field": "lhh_percent_formatted", "width": 100, "headerFilter":"input"},
|
209 |
+
{ "title": "Velocity", "field": "start_speed_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
|
210 |
+
{ "title": "iVB", "field": "ivb_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
|
211 |
+
{ "title": "HB", "field": "hb_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
|
212 |
+
{ "title": "RelH", "field": "release_pos_z_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
|
213 |
+
{ "title": "RelS", "field": "release_pos_x_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
|
214 |
+
{ "title": "Extension", "field": "extension_formatted", "width": 125, "headerFilter":"input", "formatter":"textarea" },
|
215 |
+
{ "title": "tjStuff+", "field": "tj_stuff_plus_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" }
|
216 |
+
]
|
217 |
+
|
218 |
+
|
219 |
+
df_plot = df_merge.to_pandas()
|
220 |
+
|
221 |
+
team_dict = dict(zip(df_spring['pitcher_id'],df_spring['pitcher_team']))
|
222 |
+
df_plot['pitcher_team'] = df_plot['pitcher_id'].map(team_dict)
|
223 |
+
|
224 |
+
|
225 |
+
|
226 |
+
return Tabulator(
|
227 |
+
df_plot,
|
228 |
+
|
229 |
+
table_options=TableOptions(
|
230 |
+
height=750,
|
231 |
+
|
232 |
+
columns=columns,
|
233 |
+
)
|
234 |
+
)
|
235 |
|
|
|
236 |
|
237 |
|
238 |
+
app = App(app_ui, server)
|