Spaces:
Runtime error
Runtime error
# Changed from https://huggingface.co/spaces/playgroundai/playground-v2.5/blob/main/app.py | |
import argparse | |
import os | |
import random | |
import time | |
from datetime import datetime | |
import GPUtil | |
# import gradio last to avoid conflicts with other imports | |
import gradio as gr | |
import safety_check | |
import spaces | |
import torch | |
from diffusers import SanaPipeline | |
from nunchaku.models.transformer_sana import NunchakuSanaTransformer2DModel | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
MAX_IMAGE_SIZE = 2048 | |
MAX_SEED = 1000000000 | |
DEFAULT_HEIGHT = 1024 | |
DEFAULT_WIDTH = 1024 | |
# num_inference_steps, guidance_scale, seed | |
EXAMPLES = [ | |
[ | |
"🐶 Wearing 🕶 flying on the 🌈", | |
1024, | |
1024, | |
20, | |
5, | |
2, | |
], | |
[ | |
"大漠孤烟直, 长河落日圆", | |
1024, | |
1024, | |
20, | |
5, | |
23, | |
], | |
[ | |
"Pirate ship trapped in a cosmic maelstrom nebula, rendered in cosmic beach whirlpool engine, " | |
"volumetric lighting, spectacular, ambient lights, light pollution, cinematic atmosphere, " | |
"art nouveau style, illustration art artwork by SenseiJaye, intricate detail.", | |
1024, | |
1024, | |
20, | |
5, | |
233, | |
], | |
[ | |
"A photo of a Eurasian lynx in a sunlit forest, with tufted ears and a spotted coat. The lynx should be " | |
"sharply focused, gazing into the distance, while the background is softly blurred for depth. Use cinematic " | |
"lighting with soft rays filtering through the trees, and capture the scene with a shallow depth of field " | |
"for a natural, peaceful atmosphere. 8K resolution, highly detailed, photorealistic, " | |
"cinematic lighting, ultra-HD.", | |
1024, | |
1024, | |
20, | |
5, | |
2333, | |
], | |
[ | |
"A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. " | |
"She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. " | |
"She wears sunglasses and red lipstick. She walks confidently and casually. " | |
"The street is damp and reflective, creating a mirror effect of the colorful lights. " | |
"Many pedestrians walk about.", | |
1024, | |
1024, | |
20, | |
5, | |
23333, | |
], | |
[ | |
"Cozy bedroom with vintage wooden furniture and a large circular window covered in lush green vines, " | |
"opening to a misty forest. Soft, ambient lighting highlights the bed with crumpled blankets, a bookshelf, " | |
"and a desk. The atmosphere is serene and natural. 8K resolution, highly detailed, photorealistic, " | |
"cinematic lighting, ultra-HD.", | |
1024, | |
1024, | |
20, | |
5, | |
233333, | |
], | |
] | |
def hash_str_to_int(s: str) -> int: | |
"""Hash a string to an integer.""" | |
modulus = 10**9 + 7 # Large prime modulus | |
hash_int = 0 | |
for char in s: | |
hash_int = (hash_int * 31 + ord(char)) % modulus | |
return hash_int | |
def get_pipeline( | |
precision: str, use_qencoder: bool = False, device: str | torch.device = "cuda", pipeline_init_kwargs: dict = {} | |
) -> SanaPipeline: | |
if precision == "int4": | |
assert torch.device(device).type == "cuda", "int4 only supported on CUDA devices" | |
transformer = NunchakuSanaTransformer2DModel.from_pretrained("mit-han-lab/svdq-int4-sana-1600m") | |
pipeline_init_kwargs["transformer"] = transformer | |
if use_qencoder: | |
raise NotImplementedError("Quantized encoder not supported for Sana for now") | |
else: | |
assert precision == "bf16" | |
pipeline = SanaPipeline.from_pretrained( | |
"Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers", | |
variant="bf16", | |
torch_dtype=torch.bfloat16, | |
**pipeline_init_kwargs, | |
) | |
pipeline = pipeline.to(device) | |
return pipeline | |
def get_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"-p", | |
"--precisions", | |
type=str, | |
default=["int4"], | |
nargs="*", | |
choices=["int4", "bf16"], | |
help="Which precisions to use", | |
) | |
parser.add_argument("--use-qencoder", action="store_true", help="Whether to use 4-bit text encoder") | |
parser.add_argument("--no-safety-checker", action="store_true", help="Disable safety checker") | |
parser.add_argument("--count-use", action="store_true", help="Whether to count the number of uses") | |
return parser.parse_args() | |
args = get_args() | |
pipelines = [] | |
pipeline_init_kwargs = {} | |
for i, precision in enumerate(args.precisions): | |
pipeline = get_pipeline( | |
precision=precision, | |
use_qencoder=args.use_qencoder, | |
device="cuda", | |
pipeline_init_kwargs={**pipeline_init_kwargs}, | |
) | |
pipelines.append(pipeline) | |
if i == 0: | |
pipeline_init_kwargs["vae"] = pipeline.vae | |
pipeline_init_kwargs["text_encoder"] = pipeline.text_encoder | |
# safety checker | |
safety_checker_tokenizer = AutoTokenizer.from_pretrained(args.shield_model_path) | |
safety_checker_model = AutoModelForCausalLM.from_pretrained( | |
args.shield_model_path, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
).to(pipeline.device) | |
def generate( | |
prompt: str = None, | |
height: int = 1024, | |
width: int = 1024, | |
num_inference_steps: int = 4, | |
guidance_scale: float = 0, | |
seed: int = 0, | |
): | |
print(f"Prompt: {prompt}") | |
is_unsafe_prompt = False | |
if safety_check.is_dangerous(safety_checker_tokenizer, safety_checker_model, prompt, threshold=0.2): | |
prompt = "A peaceful world." | |
images, latency_strs = [], [] | |
for i, pipeline in enumerate(pipelines): | |
progress = gr.Progress(track_tqdm=True) | |
start_time = time.time() | |
image = pipeline( | |
prompt=prompt, | |
height=height, | |
width=width, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=torch.Generator().manual_seed(seed), | |
).images[0] | |
end_time = time.time() | |
latency = end_time - start_time | |
if latency < 1: | |
latency = latency * 1000 | |
latency_str = f"{latency:.2f}ms" | |
else: | |
latency_str = f"{latency:.2f}s" | |
images.append(image) | |
latency_strs.append(latency_str) | |
if is_unsafe_prompt: | |
for i in range(len(latency_strs)): | |
latency_strs[i] += " (Unsafe prompt detected)" | |
torch.cuda.empty_cache() | |
if args.count_use: | |
if os.path.exists("use_count.txt"): | |
with open("use_count.txt") as f: | |
count = int(f.read()) | |
else: | |
count = 0 | |
count += 1 | |
current_time = datetime.now() | |
print(f"{current_time}: {count}") | |
with open("use_count.txt", "w") as f: | |
f.write(str(count)) | |
with open("use_record.txt", "a") as f: | |
f.write(f"{current_time}: {count}\n") | |
return *images, *latency_strs | |
with open("./assets/description.html") as f: | |
DESCRIPTION = f.read() | |
gpus = GPUtil.getGPUs() | |
if len(gpus) > 0: | |
gpu = gpus[0] | |
memory = gpu.memoryTotal / 1024 | |
device_info = f"Running on {gpu.name} with {memory:.0f} GiB memory." | |
else: | |
device_info = "Running on CPU 🥶 This demo does not work on CPU." | |
notice = f'<strong>Notice:</strong> We will replace unsafe prompts with a default prompt: "A peaceful world."' | |
with gr.Blocks( | |
css_paths=[f"assets/frame{len(args.precisions)}.css", "assets/common.css"], | |
title=f"SVDQuant SANA-1600M Demo", | |
) as demo: | |
def get_header_str(): | |
if args.count_use: | |
if os.path.exists("use_count.txt"): | |
with open("use_count.txt") as f: | |
count = int(f.read()) | |
else: | |
count = 0 | |
count_info = ( | |
f"<div style='display: flex; justify-content: center; align-items: center; text-align: center;'>" | |
f"<span style='font-size: 18px; font-weight: bold;'>Total inference runs: </span>" | |
f"<span style='font-size: 18px; color:red; font-weight: bold;'> {count}</span></div>" | |
) | |
else: | |
count_info = "" | |
header_str = DESCRIPTION.format(device_info=device_info, notice=notice, count_info=count_info) | |
return header_str | |
header = gr.HTML(get_header_str()) | |
demo.load(fn=get_header_str, outputs=header) | |
with gr.Row(): | |
image_results, latency_results = [], [] | |
for i, precision in enumerate(args.precisions): | |
with gr.Column(): | |
gr.Markdown(f"# {precision.upper()}", elem_id="image_header") | |
with gr.Group(): | |
image_result = gr.Image( | |
format="png", | |
image_mode="RGB", | |
label="Result", | |
show_label=False, | |
show_download_button=True, | |
interactive=False, | |
) | |
latency_result = gr.Text(label="Inference Latency", show_label=True) | |
image_results.append(image_result) | |
latency_results.append(latency_result) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, scale=4 | |
) | |
run_button = gr.Button("Run", scale=1) | |
with gr.Row(): | |
seed = gr.Slider(label="Seed", show_label=True, minimum=0, maximum=MAX_SEED, value=233, step=1, scale=4) | |
randomize_seed = gr.Button("Random Seed", scale=1, min_width=50, elem_id="random_seed") | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Group(): | |
height = gr.Slider(label="Height", minimum=256, maximum=4096, step=32, value=1024) | |
width = gr.Slider(label="Width", minimum=256, maximum=4096, step=32, value=1024) | |
with gr.Group(): | |
num_inference_steps = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, step=1, value=20) | |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=10, step=0.1, value=5) | |
input_args = [prompt, height, width, num_inference_steps, guidance_scale, seed] | |
gr.Examples(examples=EXAMPLES, inputs=input_args, outputs=[*image_results, *latency_results], fn=generate) | |
gr.on( | |
triggers=[prompt.submit, run_button.click], | |
fn=generate, | |
inputs=input_args, | |
outputs=[*image_results, *latency_results], | |
api_name="run", | |
) | |
randomize_seed.click( | |
lambda: random.randint(0, MAX_SEED), inputs=[], outputs=seed, api_name=False, queue=False | |
).then(fn=generate, inputs=input_args, outputs=[*image_results, *latency_results], api_name=False, queue=False) | |
gr.Markdown("MIT Accessibility: https://accessibility.mit.edu/", elem_id="accessibility") | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(server_name="0.0.0.0", debug=True, share=True) | |