Spaces:
Runtime error
Runtime error
File size: 11,065 Bytes
f1f9265 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
# Changed from https://huggingface.co/spaces/playgroundai/playground-v2.5/blob/main/app.py
import argparse
import os
import random
import time
from datetime import datetime
import GPUtil
# import gradio last to avoid conflicts with other imports
import gradio as gr
import safety_check
import spaces
import torch
from diffusers import SanaPipeline
from nunchaku.models.transformer_sana import NunchakuSanaTransformer2DModel
from transformers import AutoModelForCausalLM, AutoTokenizer
MAX_IMAGE_SIZE = 2048
MAX_SEED = 1000000000
DEFAULT_HEIGHT = 1024
DEFAULT_WIDTH = 1024
# num_inference_steps, guidance_scale, seed
EXAMPLES = [
[
"🐶 Wearing 🕶 flying on the 🌈",
1024,
1024,
20,
5,
2,
],
[
"大漠孤烟直, 长河落日圆",
1024,
1024,
20,
5,
23,
],
[
"Pirate ship trapped in a cosmic maelstrom nebula, rendered in cosmic beach whirlpool engine, "
"volumetric lighting, spectacular, ambient lights, light pollution, cinematic atmosphere, "
"art nouveau style, illustration art artwork by SenseiJaye, intricate detail.",
1024,
1024,
20,
5,
233,
],
[
"A photo of a Eurasian lynx in a sunlit forest, with tufted ears and a spotted coat. The lynx should be "
"sharply focused, gazing into the distance, while the background is softly blurred for depth. Use cinematic "
"lighting with soft rays filtering through the trees, and capture the scene with a shallow depth of field "
"for a natural, peaceful atmosphere. 8K resolution, highly detailed, photorealistic, "
"cinematic lighting, ultra-HD.",
1024,
1024,
20,
5,
2333,
],
[
"A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. "
"She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. "
"She wears sunglasses and red lipstick. She walks confidently and casually. "
"The street is damp and reflective, creating a mirror effect of the colorful lights. "
"Many pedestrians walk about.",
1024,
1024,
20,
5,
23333,
],
[
"Cozy bedroom with vintage wooden furniture and a large circular window covered in lush green vines, "
"opening to a misty forest. Soft, ambient lighting highlights the bed with crumpled blankets, a bookshelf, "
"and a desk. The atmosphere is serene and natural. 8K resolution, highly detailed, photorealistic, "
"cinematic lighting, ultra-HD.",
1024,
1024,
20,
5,
233333,
],
]
def hash_str_to_int(s: str) -> int:
"""Hash a string to an integer."""
modulus = 10**9 + 7 # Large prime modulus
hash_int = 0
for char in s:
hash_int = (hash_int * 31 + ord(char)) % modulus
return hash_int
def get_pipeline(
precision: str, use_qencoder: bool = False, device: str | torch.device = "cuda", pipeline_init_kwargs: dict = {}
) -> SanaPipeline:
if precision == "int4":
assert torch.device(device).type == "cuda", "int4 only supported on CUDA devices"
transformer = NunchakuSanaTransformer2DModel.from_pretrained("mit-han-lab/svdq-int4-sana-1600m")
pipeline_init_kwargs["transformer"] = transformer
if use_qencoder:
raise NotImplementedError("Quantized encoder not supported for Sana for now")
else:
assert precision == "bf16"
pipeline = SanaPipeline.from_pretrained(
"Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
variant="bf16",
torch_dtype=torch.bfloat16,
**pipeline_init_kwargs,
)
pipeline = pipeline.to(device)
return pipeline
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument(
"-p",
"--precisions",
type=str,
default=["int4"],
nargs="*",
choices=["int4", "bf16"],
help="Which precisions to use",
)
parser.add_argument("--use-qencoder", action="store_true", help="Whether to use 4-bit text encoder")
parser.add_argument("--no-safety-checker", action="store_true", help="Disable safety checker")
parser.add_argument("--count-use", action="store_true", help="Whether to count the number of uses")
return parser.parse_args()
args = get_args()
pipelines = []
pipeline_init_kwargs = {}
for i, precision in enumerate(args.precisions):
pipeline = get_pipeline(
precision=precision,
use_qencoder=args.use_qencoder,
device="cuda",
pipeline_init_kwargs={**pipeline_init_kwargs},
)
pipelines.append(pipeline)
if i == 0:
pipeline_init_kwargs["vae"] = pipeline.vae
pipeline_init_kwargs["text_encoder"] = pipeline.text_encoder
# safety checker
safety_checker_tokenizer = AutoTokenizer.from_pretrained(args.shield_model_path)
safety_checker_model = AutoModelForCausalLM.from_pretrained(
args.shield_model_path,
device_map="auto",
torch_dtype=torch.bfloat16,
).to(pipeline.device)
@spaces.GPU(enable_queue=True)
def generate(
prompt: str = None,
height: int = 1024,
width: int = 1024,
num_inference_steps: int = 4,
guidance_scale: float = 0,
seed: int = 0,
):
print(f"Prompt: {prompt}")
is_unsafe_prompt = False
if safety_check.is_dangerous(safety_checker_tokenizer, safety_checker_model, prompt, threshold=0.2):
prompt = "A peaceful world."
images, latency_strs = [], []
for i, pipeline in enumerate(pipelines):
progress = gr.Progress(track_tqdm=True)
start_time = time.time()
image = pipeline(
prompt=prompt,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
end_time = time.time()
latency = end_time - start_time
if latency < 1:
latency = latency * 1000
latency_str = f"{latency:.2f}ms"
else:
latency_str = f"{latency:.2f}s"
images.append(image)
latency_strs.append(latency_str)
if is_unsafe_prompt:
for i in range(len(latency_strs)):
latency_strs[i] += " (Unsafe prompt detected)"
torch.cuda.empty_cache()
if args.count_use:
if os.path.exists("use_count.txt"):
with open("use_count.txt") as f:
count = int(f.read())
else:
count = 0
count += 1
current_time = datetime.now()
print(f"{current_time}: {count}")
with open("use_count.txt", "w") as f:
f.write(str(count))
with open("use_record.txt", "a") as f:
f.write(f"{current_time}: {count}\n")
return *images, *latency_strs
with open("./assets/description.html") as f:
DESCRIPTION = f.read()
gpus = GPUtil.getGPUs()
if len(gpus) > 0:
gpu = gpus[0]
memory = gpu.memoryTotal / 1024
device_info = f"Running on {gpu.name} with {memory:.0f} GiB memory."
else:
device_info = "Running on CPU 🥶 This demo does not work on CPU."
notice = f'<strong>Notice:</strong> We will replace unsafe prompts with a default prompt: "A peaceful world."'
with gr.Blocks(
css_paths=[f"assets/frame{len(args.precisions)}.css", "assets/common.css"],
title=f"SVDQuant SANA-1600M Demo",
) as demo:
def get_header_str():
if args.count_use:
if os.path.exists("use_count.txt"):
with open("use_count.txt") as f:
count = int(f.read())
else:
count = 0
count_info = (
f"<div style='display: flex; justify-content: center; align-items: center; text-align: center;'>"
f"<span style='font-size: 18px; font-weight: bold;'>Total inference runs: </span>"
f"<span style='font-size: 18px; color:red; font-weight: bold;'> {count}</span></div>"
)
else:
count_info = ""
header_str = DESCRIPTION.format(device_info=device_info, notice=notice, count_info=count_info)
return header_str
header = gr.HTML(get_header_str())
demo.load(fn=get_header_str, outputs=header)
with gr.Row():
image_results, latency_results = [], []
for i, precision in enumerate(args.precisions):
with gr.Column():
gr.Markdown(f"# {precision.upper()}", elem_id="image_header")
with gr.Group():
image_result = gr.Image(
format="png",
image_mode="RGB",
label="Result",
show_label=False,
show_download_button=True,
interactive=False,
)
latency_result = gr.Text(label="Inference Latency", show_label=True)
image_results.append(image_result)
latency_results.append(latency_result)
with gr.Row():
prompt = gr.Text(
label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, scale=4
)
run_button = gr.Button("Run", scale=1)
with gr.Row():
seed = gr.Slider(label="Seed", show_label=True, minimum=0, maximum=MAX_SEED, value=233, step=1, scale=4)
randomize_seed = gr.Button("Random Seed", scale=1, min_width=50, elem_id="random_seed")
with gr.Accordion("Advanced options", open=False):
with gr.Group():
height = gr.Slider(label="Height", minimum=256, maximum=4096, step=32, value=1024)
width = gr.Slider(label="Width", minimum=256, maximum=4096, step=32, value=1024)
with gr.Group():
num_inference_steps = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, step=1, value=20)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=10, step=0.1, value=5)
input_args = [prompt, height, width, num_inference_steps, guidance_scale, seed]
gr.Examples(examples=EXAMPLES, inputs=input_args, outputs=[*image_results, *latency_results], fn=generate)
gr.on(
triggers=[prompt.submit, run_button.click],
fn=generate,
inputs=input_args,
outputs=[*image_results, *latency_results],
api_name="run",
)
randomize_seed.click(
lambda: random.randint(0, MAX_SEED), inputs=[], outputs=seed, api_name=False, queue=False
).then(fn=generate, inputs=input_args, outputs=[*image_results, *latency_results], api_name=False, queue=False)
gr.Markdown("MIT Accessibility: https://accessibility.mit.edu/", elem_id="accessibility")
if __name__ == "__main__":
demo.queue(max_size=20).launch(server_name="0.0.0.0", debug=True, share=True)
|