File size: 11,065 Bytes
f1f9265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# Changed from https://huggingface.co/spaces/playgroundai/playground-v2.5/blob/main/app.py
import argparse
import os
import random
import time
from datetime import datetime

import GPUtil

# import gradio last to avoid conflicts with other imports
import gradio as gr
import safety_check
import spaces
import torch
from diffusers import SanaPipeline
from nunchaku.models.transformer_sana import NunchakuSanaTransformer2DModel
from transformers import AutoModelForCausalLM, AutoTokenizer

MAX_IMAGE_SIZE = 2048
MAX_SEED = 1000000000

DEFAULT_HEIGHT = 1024
DEFAULT_WIDTH = 1024

# num_inference_steps, guidance_scale, seed
EXAMPLES = [
    [
        "🐶 Wearing 🕶 flying on the 🌈",
        1024,
        1024,
        20,
        5,
        2,
    ],
    [
        "大漠孤烟直, 长河落日圆",
        1024,
        1024,
        20,
        5,
        23,
    ],
    [
        "Pirate ship trapped in a cosmic maelstrom nebula, rendered in cosmic beach whirlpool engine, "
        "volumetric lighting, spectacular, ambient lights, light pollution, cinematic atmosphere, "
        "art nouveau style, illustration art artwork by SenseiJaye, intricate detail.",
        1024,
        1024,
        20,
        5,
        233,
    ],
    [
        "A photo of a Eurasian lynx in a sunlit forest, with tufted ears and a spotted coat. The lynx should be "
        "sharply focused, gazing into the distance, while the background is softly blurred for depth. Use cinematic "
        "lighting with soft rays filtering through the trees, and capture the scene with a shallow depth of field "
        "for a natural, peaceful atmosphere. 8K resolution, highly detailed, photorealistic, "
        "cinematic lighting, ultra-HD.",
        1024,
        1024,
        20,
        5,
        2333,
    ],
    [
        "A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. "
        "She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. "
        "She wears sunglasses and red lipstick. She walks confidently and casually. "
        "The street is damp and reflective, creating a mirror effect of the colorful lights. "
        "Many pedestrians walk about.",
        1024,
        1024,
        20,
        5,
        23333,
    ],
    [
        "Cozy bedroom with vintage wooden furniture and a large circular window covered in lush green vines, "
        "opening to a misty forest. Soft, ambient lighting highlights the bed with crumpled blankets, a bookshelf, "
        "and a desk. The atmosphere is serene and natural. 8K resolution, highly detailed, photorealistic, "
        "cinematic lighting, ultra-HD.",
        1024,
        1024,
        20,
        5,
        233333,
    ],
]


def hash_str_to_int(s: str) -> int:
    """Hash a string to an integer."""
    modulus = 10**9 + 7  # Large prime modulus
    hash_int = 0
    for char in s:
        hash_int = (hash_int * 31 + ord(char)) % modulus
    return hash_int


def get_pipeline(
    precision: str, use_qencoder: bool = False, device: str | torch.device = "cuda", pipeline_init_kwargs: dict = {}
) -> SanaPipeline:
    if precision == "int4":
        assert torch.device(device).type == "cuda", "int4 only supported on CUDA devices"
        transformer = NunchakuSanaTransformer2DModel.from_pretrained("mit-han-lab/svdq-int4-sana-1600m")

        pipeline_init_kwargs["transformer"] = transformer
        if use_qencoder:
            raise NotImplementedError("Quantized encoder not supported for Sana for now")
    else:
        assert precision == "bf16"
    pipeline = SanaPipeline.from_pretrained(
        "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
        variant="bf16",
        torch_dtype=torch.bfloat16,
        **pipeline_init_kwargs,
    )

    pipeline = pipeline.to(device)
    return pipeline


def get_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-p",
        "--precisions",
        type=str,
        default=["int4"],
        nargs="*",
        choices=["int4", "bf16"],
        help="Which precisions to use",
    )
    parser.add_argument("--use-qencoder", action="store_true", help="Whether to use 4-bit text encoder")
    parser.add_argument("--no-safety-checker", action="store_true", help="Disable safety checker")
    parser.add_argument("--count-use", action="store_true", help="Whether to count the number of uses")
    return parser.parse_args()


args = get_args()


pipelines = []
pipeline_init_kwargs = {}
for i, precision in enumerate(args.precisions):

    pipeline = get_pipeline(
        precision=precision,
        use_qencoder=args.use_qencoder,
        device="cuda",
        pipeline_init_kwargs={**pipeline_init_kwargs},
    )
    pipelines.append(pipeline)
    if i == 0:
        pipeline_init_kwargs["vae"] = pipeline.vae
        pipeline_init_kwargs["text_encoder"] = pipeline.text_encoder

# safety checker
safety_checker_tokenizer = AutoTokenizer.from_pretrained(args.shield_model_path)
safety_checker_model = AutoModelForCausalLM.from_pretrained(
    args.shield_model_path,
    device_map="auto",
    torch_dtype=torch.bfloat16,
).to(pipeline.device)


@spaces.GPU(enable_queue=True)
def generate(
    prompt: str = None,
    height: int = 1024,
    width: int = 1024,
    num_inference_steps: int = 4,
    guidance_scale: float = 0,
    seed: int = 0,
):
    print(f"Prompt: {prompt}")
    is_unsafe_prompt = False
    if safety_check.is_dangerous(safety_checker_tokenizer, safety_checker_model, prompt, threshold=0.2):
        prompt = "A peaceful world."
    images, latency_strs = [], []
    for i, pipeline in enumerate(pipelines):
        progress = gr.Progress(track_tqdm=True)
        start_time = time.time()
        image = pipeline(
            prompt=prompt,
            height=height,
            width=width,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            generator=torch.Generator().manual_seed(seed),
        ).images[0]
        end_time = time.time()
        latency = end_time - start_time
        if latency < 1:
            latency = latency * 1000
            latency_str = f"{latency:.2f}ms"
        else:
            latency_str = f"{latency:.2f}s"
        images.append(image)
        latency_strs.append(latency_str)
    if is_unsafe_prompt:
        for i in range(len(latency_strs)):
            latency_strs[i] += " (Unsafe prompt detected)"
    torch.cuda.empty_cache()

    if args.count_use:
        if os.path.exists("use_count.txt"):
            with open("use_count.txt") as f:
                count = int(f.read())
        else:
            count = 0
        count += 1
        current_time = datetime.now()
        print(f"{current_time}: {count}")
        with open("use_count.txt", "w") as f:
            f.write(str(count))
        with open("use_record.txt", "a") as f:
            f.write(f"{current_time}: {count}\n")

    return *images, *latency_strs


with open("./assets/description.html") as f:
    DESCRIPTION = f.read()
gpus = GPUtil.getGPUs()
if len(gpus) > 0:
    gpu = gpus[0]
    memory = gpu.memoryTotal / 1024
    device_info = f"Running on {gpu.name} with {memory:.0f} GiB memory."
else:
    device_info = "Running on CPU 🥶 This demo does not work on CPU."
notice = f'<strong>Notice:</strong>&nbsp;We will replace unsafe prompts with a default prompt: "A peaceful world."'

with gr.Blocks(
    css_paths=[f"assets/frame{len(args.precisions)}.css", "assets/common.css"],
    title=f"SVDQuant SANA-1600M Demo",
) as demo:

    def get_header_str():

        if args.count_use:
            if os.path.exists("use_count.txt"):
                with open("use_count.txt") as f:
                    count = int(f.read())
            else:
                count = 0
            count_info = (
                f"<div style='display: flex; justify-content: center; align-items: center; text-align: center;'>"
                f"<span style='font-size: 18px; font-weight: bold;'>Total inference runs: </span>"
                f"<span style='font-size: 18px; color:red; font-weight: bold;'>&nbsp;{count}</span></div>"
            )
        else:
            count_info = ""
        header_str = DESCRIPTION.format(device_info=device_info, notice=notice, count_info=count_info)
        return header_str

    header = gr.HTML(get_header_str())
    demo.load(fn=get_header_str, outputs=header)

    with gr.Row():
        image_results, latency_results = [], []
        for i, precision in enumerate(args.precisions):
            with gr.Column():
                gr.Markdown(f"# {precision.upper()}", elem_id="image_header")
                with gr.Group():
                    image_result = gr.Image(
                        format="png",
                        image_mode="RGB",
                        label="Result",
                        show_label=False,
                        show_download_button=True,
                        interactive=False,
                    )
                    latency_result = gr.Text(label="Inference Latency", show_label=True)
                    image_results.append(image_result)
                    latency_results.append(latency_result)
    with gr.Row():
        prompt = gr.Text(
            label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, scale=4
        )
        run_button = gr.Button("Run", scale=1)

    with gr.Row():
        seed = gr.Slider(label="Seed", show_label=True, minimum=0, maximum=MAX_SEED, value=233, step=1, scale=4)
        randomize_seed = gr.Button("Random Seed", scale=1, min_width=50, elem_id="random_seed")
    with gr.Accordion("Advanced options", open=False):
        with gr.Group():
            height = gr.Slider(label="Height", minimum=256, maximum=4096, step=32, value=1024)
            width = gr.Slider(label="Width", minimum=256, maximum=4096, step=32, value=1024)
        with gr.Group():
            num_inference_steps = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, step=1, value=20)
            guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=10, step=0.1, value=5)

    input_args = [prompt, height, width, num_inference_steps, guidance_scale, seed]

    gr.Examples(examples=EXAMPLES, inputs=input_args, outputs=[*image_results, *latency_results], fn=generate)

    gr.on(
        triggers=[prompt.submit, run_button.click],
        fn=generate,
        inputs=input_args,
        outputs=[*image_results, *latency_results],
        api_name="run",
    )
    randomize_seed.click(
        lambda: random.randint(0, MAX_SEED), inputs=[], outputs=seed, api_name=False, queue=False
    ).then(fn=generate, inputs=input_args, outputs=[*image_results, *latency_results], api_name=False, queue=False)

    gr.Markdown("MIT Accessibility: https://accessibility.mit.edu/", elem_id="accessibility")


if __name__ == "__main__":
    demo.queue(max_size=20).launch(server_name="0.0.0.0", debug=True, share=True)