Xtaiyang commited on
Commit
8325627
·
1 Parent(s): 3bd8199
Files changed (2) hide show
  1. README.md +0 -164
  2. data/README.md +10 -0
README.md DELETED
@@ -1,164 +0,0 @@
1
- ---
2
- language:
3
- - multilingual
4
- - ar
5
- - bg
6
- - ca
7
- - cs
8
- - da
9
- - de
10
- - el
11
- - en
12
- - es
13
- - et
14
- - fa
15
- - fi
16
- - fr
17
- - gl
18
- - gu
19
- - he
20
- - hi
21
- - hr
22
- - hu
23
- - hy
24
- - id
25
- - it
26
- - ja
27
- - ka
28
- - ko
29
- - ku
30
- - lt
31
- - lv
32
- - mk
33
- - mn
34
- - mr
35
- - ms
36
- - my
37
- - nb
38
- - nl
39
- - pl
40
- - pt
41
- - ro
42
- - ru
43
- - sk
44
- - sl
45
- - sq
46
- - sr
47
- - sv
48
- - th
49
- - tr
50
- - uk
51
- - ur
52
- - vi
53
- license: apache-2.0
54
- library_name: sentence-transformers
55
- tags:
56
- - sentence-transformers
57
- - feature-extraction
58
- - sentence-similarity
59
- - transformers
60
- language_bcp47:
61
- - fr-ca
62
- - pt-br
63
- - zh-cn
64
- - zh-tw
65
- pipeline_tag: sentence-similarity
66
- ---
67
-
68
- # sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
69
-
70
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
71
-
72
-
73
-
74
- ## Usage (Sentence-Transformers)
75
-
76
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
77
-
78
- ```
79
- pip install -U sentence-transformers
80
- ```
81
-
82
- Then you can use the model like this:
83
-
84
- ```python
85
- from sentence_transformers import SentenceTransformer
86
- sentences = ["This is an example sentence", "Each sentence is converted"]
87
-
88
- model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
89
- embeddings = model.encode(sentences)
90
- print(embeddings)
91
- ```
92
-
93
-
94
-
95
- ## Usage (HuggingFace Transformers)
96
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
97
-
98
- ```python
99
- from transformers import AutoTokenizer, AutoModel
100
- import torch
101
-
102
-
103
- # Mean Pooling - Take attention mask into account for correct averaging
104
- def mean_pooling(model_output, attention_mask):
105
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
106
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
107
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
108
-
109
-
110
- # Sentences we want sentence embeddings for
111
- sentences = ['This is an example sentence', 'Each sentence is converted']
112
-
113
- # Load model from HuggingFace Hub
114
- tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
115
- model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
116
-
117
- # Tokenize sentences
118
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
119
-
120
- # Compute token embeddings
121
- with torch.no_grad():
122
- model_output = model(**encoded_input)
123
-
124
- # Perform pooling. In this case, max pooling.
125
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
126
-
127
- print("Sentence embeddings:")
128
- print(sentence_embeddings)
129
- ```
130
-
131
-
132
-
133
- ## Evaluation Results
134
-
135
-
136
-
137
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
138
-
139
-
140
-
141
- ## Full Model Architecture
142
- ```
143
- SentenceTransformer(
144
- (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
145
- (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
146
- )
147
- ```
148
-
149
- ## Citing & Authors
150
-
151
- This model was trained by [sentence-transformers](https://www.sbert.net/).
152
-
153
- If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
154
- ```bibtex
155
- @inproceedings{reimers-2019-sentence-bert,
156
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
157
- author = "Reimers, Nils and Gurevych, Iryna",
158
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
159
- month = "11",
160
- year = "2019",
161
- publisher = "Association for Computational Linguistics",
162
- url = "http://arxiv.org/abs/1908.10084",
163
- }
164
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/README.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: {{title}}
3
+ emoji: {{emoji}}
4
+ colorFrom: {{colorFrom}}
5
+ colorTo: {{colorTo}}
6
+ sdk: {{sdk}}
7
+ sdk_version: "{{sdkVersion}}"
8
+ app_file: app.py
9
+ pinned: false
10
+ ---