Xtaiyang commited on
Commit
3bd8199
·
1 Parent(s): 4aa1db7
README.md CHANGED
@@ -1,13 +1,164 @@
1
  ---
2
- title: Llamaindex RAG
3
- emoji: 📉
4
- colorFrom: blue
5
- colorTo: gray
6
- sdk: streamlit
7
- sdk_version: 1.40.2
8
- app_file: app.py
9
- pinned: false
10
- short_description: Streamlit+LlamaIndex+浦语API
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - multilingual
4
+ - ar
5
+ - bg
6
+ - ca
7
+ - cs
8
+ - da
9
+ - de
10
+ - el
11
+ - en
12
+ - es
13
+ - et
14
+ - fa
15
+ - fi
16
+ - fr
17
+ - gl
18
+ - gu
19
+ - he
20
+ - hi
21
+ - hr
22
+ - hu
23
+ - hy
24
+ - id
25
+ - it
26
+ - ja
27
+ - ka
28
+ - ko
29
+ - ku
30
+ - lt
31
+ - lv
32
+ - mk
33
+ - mn
34
+ - mr
35
+ - ms
36
+ - my
37
+ - nb
38
+ - nl
39
+ - pl
40
+ - pt
41
+ - ro
42
+ - ru
43
+ - sk
44
+ - sl
45
+ - sq
46
+ - sr
47
+ - sv
48
+ - th
49
+ - tr
50
+ - uk
51
+ - ur
52
+ - vi
53
+ license: apache-2.0
54
+ library_name: sentence-transformers
55
+ tags:
56
+ - sentence-transformers
57
+ - feature-extraction
58
+ - sentence-similarity
59
+ - transformers
60
+ language_bcp47:
61
+ - fr-ca
62
+ - pt-br
63
+ - zh-cn
64
+ - zh-tw
65
+ pipeline_tag: sentence-similarity
66
  ---
67
 
68
+ # sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
69
+
70
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
71
+
72
+
73
+
74
+ ## Usage (Sentence-Transformers)
75
+
76
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
77
+
78
+ ```
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then you can use the model like this:
83
+
84
+ ```python
85
+ from sentence_transformers import SentenceTransformer
86
+ sentences = ["This is an example sentence", "Each sentence is converted"]
87
+
88
+ model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
89
+ embeddings = model.encode(sentences)
90
+ print(embeddings)
91
+ ```
92
+
93
+
94
+
95
+ ## Usage (HuggingFace Transformers)
96
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
97
+
98
+ ```python
99
+ from transformers import AutoTokenizer, AutoModel
100
+ import torch
101
+
102
+
103
+ # Mean Pooling - Take attention mask into account for correct averaging
104
+ def mean_pooling(model_output, attention_mask):
105
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
106
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
107
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
108
+
109
+
110
+ # Sentences we want sentence embeddings for
111
+ sentences = ['This is an example sentence', 'Each sentence is converted']
112
+
113
+ # Load model from HuggingFace Hub
114
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
115
+ model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
116
+
117
+ # Tokenize sentences
118
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
119
+
120
+ # Compute token embeddings
121
+ with torch.no_grad():
122
+ model_output = model(**encoded_input)
123
+
124
+ # Perform pooling. In this case, max pooling.
125
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
126
+
127
+ print("Sentence embeddings:")
128
+ print(sentence_embeddings)
129
+ ```
130
+
131
+
132
+
133
+ ## Evaluation Results
134
+
135
+
136
+
137
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
138
+
139
+
140
+
141
+ ## Full Model Architecture
142
+ ```
143
+ SentenceTransformer(
144
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
145
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
146
+ )
147
+ ```
148
+
149
+ ## Citing & Authors
150
+
151
+ This model was trained by [sentence-transformers](https://www.sbert.net/).
152
+
153
+ If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
154
+ ```bibtex
155
+ @inproceedings{reimers-2019-sentence-bert,
156
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
157
+ author = "Reimers, Nils and Gurevych, Iryna",
158
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
159
+ month = "11",
160
+ year = "2019",
161
+ publisher = "Association for Computational Linguistics",
162
+ url = "http://arxiv.org/abs/1908.10084",
163
+ }
164
+ ```
.gitattributes → model/.gitattributes RENAMED
@@ -1,35 +1,21 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
  *.model filter=lfs diff=lfs merge=lfs -text
13
  *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
  *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
  *.pt filter=lfs diff=lfs merge=lfs -text
23
  *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
 
 
 
 
4
  *.h5 filter=lfs diff=lfs merge=lfs -text
5
+ *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
9
+ *.arrow filter=lfs diff=lfs merge=lfs -text
10
+ *.ftz filter=lfs diff=lfs merge=lfs -text
11
  *.joblib filter=lfs diff=lfs merge=lfs -text
 
 
12
  *.model filter=lfs diff=lfs merge=lfs -text
13
  *.msgpack filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
14
  *.pb filter=lfs diff=lfs merge=lfs -text
 
 
15
  *.pt filter=lfs diff=lfs merge=lfs -text
16
  *.pth filter=lfs diff=lfs merge=lfs -text
17
+ pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
18
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
19
+ unigram.json filter=lfs diff=lfs merge=lfs -text
20
+ .git/lfs/objects/8a/01/8a016203ad4fe42aaad6e9329f70e4ea2ea19d4e14e43f1a36ec140233e604ef filter=lfs diff=lfs merge=lfs -text
21
+ model.safetensors filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
model/1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
model/README.md ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - ar
5
+ - bg
6
+ - ca
7
+ - cs
8
+ - da
9
+ - de
10
+ - el
11
+ - en
12
+ - es
13
+ - et
14
+ - fa
15
+ - fi
16
+ - fr
17
+ - gl
18
+ - gu
19
+ - he
20
+ - hi
21
+ - hr
22
+ - hu
23
+ - hy
24
+ - id
25
+ - it
26
+ - ja
27
+ - ka
28
+ - ko
29
+ - ku
30
+ - lt
31
+ - lv
32
+ - mk
33
+ - mn
34
+ - mr
35
+ - ms
36
+ - my
37
+ - nb
38
+ - nl
39
+ - pl
40
+ - pt
41
+ - ro
42
+ - ru
43
+ - sk
44
+ - sl
45
+ - sq
46
+ - sr
47
+ - sv
48
+ - th
49
+ - tr
50
+ - uk
51
+ - ur
52
+ - vi
53
+ license: apache-2.0
54
+ library_name: sentence-transformers
55
+ tags:
56
+ - sentence-transformers
57
+ - feature-extraction
58
+ - sentence-similarity
59
+ - transformers
60
+ language_bcp47:
61
+ - fr-ca
62
+ - pt-br
63
+ - zh-cn
64
+ - zh-tw
65
+ pipeline_tag: sentence-similarity
66
+ ---
67
+
68
+ # sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
69
+
70
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
71
+
72
+
73
+
74
+ ## Usage (Sentence-Transformers)
75
+
76
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
77
+
78
+ ```
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then you can use the model like this:
83
+
84
+ ```python
85
+ from sentence_transformers import SentenceTransformer
86
+ sentences = ["This is an example sentence", "Each sentence is converted"]
87
+
88
+ model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
89
+ embeddings = model.encode(sentences)
90
+ print(embeddings)
91
+ ```
92
+
93
+
94
+
95
+ ## Usage (HuggingFace Transformers)
96
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
97
+
98
+ ```python
99
+ from transformers import AutoTokenizer, AutoModel
100
+ import torch
101
+
102
+
103
+ # Mean Pooling - Take attention mask into account for correct averaging
104
+ def mean_pooling(model_output, attention_mask):
105
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
106
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
107
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
108
+
109
+
110
+ # Sentences we want sentence embeddings for
111
+ sentences = ['This is an example sentence', 'Each sentence is converted']
112
+
113
+ # Load model from HuggingFace Hub
114
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
115
+ model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
116
+
117
+ # Tokenize sentences
118
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
119
+
120
+ # Compute token embeddings
121
+ with torch.no_grad():
122
+ model_output = model(**encoded_input)
123
+
124
+ # Perform pooling. In this case, max pooling.
125
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
126
+
127
+ print("Sentence embeddings:")
128
+ print(sentence_embeddings)
129
+ ```
130
+
131
+
132
+
133
+ ## Evaluation Results
134
+
135
+
136
+
137
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
138
+
139
+
140
+
141
+ ## Full Model Architecture
142
+ ```
143
+ SentenceTransformer(
144
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
145
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
146
+ )
147
+ ```
148
+
149
+ ## Citing & Authors
150
+
151
+ This model was trained by [sentence-transformers](https://www.sbert.net/).
152
+
153
+ If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
154
+ ```bibtex
155
+ @inproceedings{reimers-2019-sentence-bert,
156
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
157
+ author = "Reimers, Nils and Gurevych, Iryna",
158
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
159
+ month = "11",
160
+ year = "2019",
161
+ publisher = "Association for Computational Linguistics",
162
+ url = "http://arxiv.org/abs/1908.10084",
163
+ }
164
+ ```
model/config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "old_models/paraphrase-multilingual-MiniLM-L12-v2/0_Transformer",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "transformers_version": "4.7.0",
21
+ "type_vocab_size": 2,
22
+ "use_cache": true,
23
+ "vocab_size": 250037
24
+ }
model/config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
model/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaa086f0ffee582aeb45b36e34cdd1fe2d6de2bef61f8a559a1bbc9bd955917b
3
+ size 470641600
model/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
model/onnx/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10f7a088420252b26caf819236ca2c9d2987afd0fc06fec7553b542a5655a05a
3
+ size 470301610
model/onnx/model_O1.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ae4b831e992807334f18a91557661e94715f502a5c7248fb81675b08391e30f
3
+ size 470212363
model/onnx/model_O2.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:338ef03c2838d5a659d36e1ce5b7a1dc2d2a66a430a9e6f499de6dc39f663850
3
+ size 470145917
model/onnx/model_O3.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2426785672da5afa2ca3ac1efae652499c72a3198e8e203d06f6d6e6c569d419
3
+ size 470145772
model/onnx/model_O4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:307bba13f9f5708461169c9f2d633c76c5572919bcc998606b6e5aea46f05db4
3
+ size 235166264
model/onnx/model_qint8_arm64.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:783fea82d71a58179b830a4dbd2d58447e640609e98eedf9ffa12622d375a672
3
+ size 118412398
model/onnx/model_qint8_avx512.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:783fea82d71a58179b830a4dbd2d58447e640609e98eedf9ffa12622d375a672
3
+ size 118412398
model/onnx/model_qint8_avx512_vnni.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:783fea82d71a58179b830a4dbd2d58447e640609e98eedf9ffa12622d375a672
3
+ size 118412398
model/onnx/model_quint8_avx2.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98a01d88b7de996cdea58c32ca71208c09968d143798814b2ea09d3439dc334f
3
+ size 118453870
model/openvino/openvino_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04e8cc4ceedb65316f374f798b9428b491281e064b4cb6076e6abf0221256ac1
3
+ size 470027920
model/openvino/openvino_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
model/openvino/openvino_model_qint8_quantized.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24acd56a5f5ae4ba5b39c9593997ebb6d5da44a6439ef1d0757a70c70aadb7e3
3
+ size 118989868
model/openvino/openvino_model_qint8_quantized.xml ADDED
The diff for this file is too large to render. See raw diff
 
model/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16cc9e54df6e083272378abec2d75dc34d7a48b5276db3ccc050d18de672ac59
3
+ size 470693617
model/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
model/sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
model/special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
model/tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22150b6ba00e477c7f816f1988d028fff924e2b52e14540889690c72c5add40e
3
+ size 470899176
model/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c3387be76557bd40970cec13153b3bbf80407865484b209e655e5e4729076b8
3
+ size 9081518
model/tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "tokenize_chinese_chars": true, "strip_accents": null, "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "old_models/paraphrase-multilingual-MiniLM-L12-v2/0_Transformer"}
model/unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71b44701d7efd054205115acfa6ef126c5d2f84bd3affe0c59e48163674d19a6
3
+ size 14763234