Sunday01's picture
up
9dce458
import os
from typing import List, Callable, Tuple
import numpy as np
import cv2
import functools
from PIL import Image
import tqdm
import requests
import sys
import hashlib
import re
import einops
import unicodedata
import json
from shapely import affinity
from shapely.geometry import Polygon, MultiPoint
try:
functools.cached_property
except AttributeError: # Supports Python versions below 3.8
from backports.cached_property import cached_property
functools.cached_property = cached_property
MODULE_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
BASE_PATH = os.path.dirname(MODULE_PATH)
# Adapted from argparse.Namespace
class Context(dict):
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def __init__(self, **kwargs):
for name in kwargs:
setattr(self, name, kwargs[name])
def __eq__(self, other):
if not isinstance(other, Context):
return NotImplemented
return vars(self) == vars(other)
def __contains__(self, key):
return key in self.keys()
def __repr__(self):
type_name = type(self).__name__
arg_strings = []
star_args = {}
for arg in self._get_args():
arg_strings.append(repr(arg))
for name, value in self._get_kwargs():
if name.isidentifier():
arg_strings.append('%s=%r' % (name, value))
else:
star_args[name] = value
if star_args:
arg_strings.append('**%s' % repr(star_args))
return '%s(%s)' % (type_name, ', '.join(arg_strings))
def _get_kwargs(self):
return list(self.items())
def _get_args(self):
return []
# TODO: Add TranslationContext for type linting
def atoi(text):
return int(text) if text.isdigit() else text
def natural_sort(l: List[str]):
return sorted(l, key=lambda text: [atoi(c) for c in re.split(r'(\d+)', text)])
def repeating_sequence(s: str):
"""Extracts repeating sequence from string. Example: 'abcabca' -> 'abc'."""
for i in range(1, len(s) // 2 + 1):
seq = s[:i]
if seq * (len(s)//len(seq)) + seq[:len(s)%len(seq)] == s:
return seq
return s
def is_whitespace(ch):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically control characters but we treat them
# as whitespace since they are generally considered as such.
if ch == " " or ch == "\t" or ch == "\n" or ch == "\r" or ord(ch) == 0:
return True
cat = unicodedata.category(ch)
if cat == "Zs":
return True
return False
def is_control(ch):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if ch == "\t" or ch == "\n" or ch == "\r":
return False
cat = unicodedata.category(ch)
if cat in ("Cc", "Cf"):
return True
return False
def is_punctuation(ch):
"""Checks whether `chars` is a punctuation character."""
cp = ord(ch)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
return True
cat = unicodedata.category(ch)
if cat.startswith("P"):
return True
return False
def is_valuable_char(ch):
# return re.search(r'[^\d\W]', ch)
return not is_punctuation(ch) and not is_control(ch) and not is_whitespace(ch) and not ch.isdigit()
def is_valuable_text(text):
for ch in text:
if is_valuable_char(ch):
return True
return False
def count_valuable_text(text: str) -> int:
return sum([1 for ch in text if is_valuable_char(ch)])
def is_right_to_left_char(ch):
"""Checks whether the char belongs to a right to left alphabet."""
# Arabic (from https://stackoverflow.com/a/49346768)
if ('\u0600' <= ch <= '\u06FF' or
'\u0750' <= ch <= '\u077F' or
'\u08A0' <= ch <= '\u08FF' or
'\uFB50' <= ch <= '\uFDFF' or
'\uFE70' <= ch <= '\uFEFF' or
'\U00010E60' <= ch <= '\U00010E7F' or
'\U0001EE00' <= ch <= '\U0001EEFF'):
return True
return False
def replace_prefix(s: str, old: str, new: str):
if s.startswith(old):
s = new + s[len(old):]
return s
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i+n]
def get_digest(file_path: str) -> str:
h = hashlib.sha256()
BUF_SIZE = 65536
with open(file_path, 'rb') as file:
while True:
# Reading is buffered, so we can read smaller chunks.
chunk = file.read(BUF_SIZE)
if not chunk:
break
h.update(chunk)
return h.hexdigest()
def get_filename_from_url(url: str, default: str = '') -> str:
m = re.search(r'/([^/?]+)[^/]*$', url)
if m:
return m.group(1)
return default
def download_url_with_progressbar(url: str, path: str):
if os.path.basename(path) in ('.', '') or os.path.isdir(path):
new_filename = get_filename_from_url(url)
if not new_filename:
raise Exception('Could not determine filename')
path = os.path.join(path, new_filename)
headers = {}
downloaded_size = 0
if os.path.isfile(path):
downloaded_size = os.path.getsize(path)
headers['Range'] = 'bytes=%d-' % downloaded_size
headers['Accept-Encoding'] = 'deflate'
r = requests.get(url, stream=True, allow_redirects=True, headers=headers)
if downloaded_size and r.headers.get('Accept-Ranges') != 'bytes':
print('Error: Webserver does not support partial downloads. Restarting from the beginning.')
r = requests.get(url, stream=True, allow_redirects=True)
downloaded_size = 0
total = int(r.headers.get('content-length', 0))
chunk_size = 1024
if r.ok:
with tqdm.tqdm(
desc=os.path.basename(path),
initial=downloaded_size,
total=total+downloaded_size,
unit='iB',
unit_scale=True,
unit_divisor=chunk_size,
) as bar:
with open(path, 'ab' if downloaded_size else 'wb') as f:
is_tty = sys.stdout.isatty()
downloaded_chunks = 0
for data in r.iter_content(chunk_size=chunk_size):
size = f.write(data)
bar.update(size)
# Fallback for non TTYs so output still shown
downloaded_chunks += 1
if not is_tty and downloaded_chunks % 1000 == 0:
print(bar)
else:
raise Exception(f'Couldn\'t resolve url: "{url}" (Error: {r.status_code})')
def prompt_yes_no(query: str, default: bool = None) -> bool:
s = '%s (%s/%s): ' % (query, 'Y' if default == True else 'y', 'N' if default == False else 'n')
while True:
inp = input(s).lower()
if inp in ('yes', 'y'):
return True
elif inp in ('no', 'n'):
return False
elif default != None:
return default
if inp:
print('Error: Please answer with "y" or "n"')
class AvgMeter():
def __init__(self):
self.reset()
def reset(self):
self.sum = 0
self.count = 0
def __call__(self, val = None):
if val is not None:
self.sum += val
self.count += 1
if self.count > 0:
return self.sum / self.count
else:
return 0
def load_image(img: Image.Image):
if img.mode == 'RGBA':
# from https://stackoverflow.com/questions/9166400/convert-rgba-png-to-rgb-with-pil
img.load() # needed for split()
background = Image.new('RGB', img.size, (255, 255, 255))
alpha_ch = img.split()[3]
background.paste(img, mask = alpha_ch) # 3 is the alpha channel
return np.array(background), alpha_ch
elif img.mode == 'P':
img = img.convert('RGBA')
img.load() # needed for split()
background = Image.new('RGB', img.size, (255, 255, 255))
alpha_ch = img.split()[3]
background.paste(img, mask = alpha_ch) # 3 is the alpha channel
return np.array(background), alpha_ch
else:
return np.array(img.convert('RGB')), None
def dump_image(img_pil: Image.Image, img: np.ndarray, alpha_ch: Image.Image = None):
if alpha_ch is not None:
if img.shape[2] != 4 :
img = np.concatenate([img.astype(np.uint8), np.array(alpha_ch).astype(np.uint8)[..., None]], axis = 2)
else:
img = img.astype(np.uint8)
result = img_pil.convert('RGBA').resize((img.shape[1], img.shape[0]))
result.paste(Image.fromarray(img), mask = alpha_ch)
return result
def resize_keep_aspect(img, size):
ratio = (float(size)/max(img.shape[0], img.shape[1]))
new_width = round(img.shape[1] * ratio)
new_height = round(img.shape[0] * ratio)
return cv2.resize(img, (new_width, new_height), interpolation = cv2.INTER_LINEAR_EXACT)
def image_resize(image, width = None, height = None, inter = cv2.INTER_AREA):
# initialize the dimensions of the image to be resized and
# grab the image size
dim = None
(h, w) = image.shape[:2]
# if both the width and height are None, then return the
# original image
if width is None and height is None:
return image
# check to see if the width is None
if width is None:
# calculate the ratio of the height and construct the
# dimensions
r = height / float(h)
dim = (int(w * r), height)
# otherwise, the height is None
else:
# calculate the ratio of the width and construct the
# dimensions
r = width / float(w)
dim = (width, int(h * r))
# resize the image
resized = cv2.resize(image, dim, interpolation = inter)
# return the resized image
return resized
def resize_polygon(pts, xfact, yfact, origin='center'):
poly = Polygon(pts)
poly = affinity.scale(poly, xfact=xfact, yfact=yfact, origin=origin)
dst_points = np.array(poly.exterior.coords[:4])
return dst_points
class BBox(object):
def __init__(self, x: int, y: int, w: int, h: int, text: str, prob: float, fg_r: int = 0, fg_g: int = 0, fg_b: int = 0, bg_r: int = 0, bg_g: int = 0, bg_b: int = 0):
self.x = x
self.y = y
self.w = w
self.h = h
self.text = text
self.prob = prob
self.fg_r = fg_r
self.fg_g = fg_g
self.fg_b = fg_b
self.bg_r = bg_r
self.bg_g = bg_g
self.bg_b = bg_b
def width(self):
return self.w
def height(self):
return self.h
def to_points(self):
tl, tr, br, bl = np.array([self.x, self.y]), np.array([self.x + self.w, self.y]), np.array([self.x + self.w, self.y+ self.h]), np.array([self.x, self.y + self.h])
return tl, tr, br, bl
@property
def xywh(self):
return np.array([self.x, self.y, self.w, self.h], dtype=np.int32)
def sort_pnts(pts: np.ndarray):
'''
Direction must be provided for sorting.
The longer structure vector (mean of long side vectors) of input points is used to determine the direction.
It is reliable enough for text lines but not for blocks.
'''
if isinstance(pts, List):
pts = np.array(pts)
assert isinstance(pts, np.ndarray) and pts.shape == (4, 2)
pairwise_vec = (pts[:, None] - pts[None]).reshape((16, -1))
pairwise_vec_norm = np.linalg.norm(pairwise_vec, axis=1)
long_side_ids = np.argsort(pairwise_vec_norm)[[8, 10]]
long_side_vecs = pairwise_vec[long_side_ids]
inner_prod = (long_side_vecs[0] * long_side_vecs[1]).sum()
if inner_prod < 0:
long_side_vecs[0] = -long_side_vecs[0]
struc_vec = np.abs(long_side_vecs.mean(axis=0))
is_vertical = struc_vec[0] <= struc_vec[1]
if is_vertical:
pts = pts[np.argsort(pts[:, 1])]
pts = pts[[*np.argsort(pts[:2, 0]), *np.argsort(pts[2:, 0])[::-1] + 2]]
return pts, is_vertical
else:
pts = pts[np.argsort(pts[:, 0])]
pts_sorted = np.zeros_like(pts)
pts_sorted[[0, 3]] = sorted(pts[[0, 1]], key=lambda x: x[1])
pts_sorted[[1, 2]] = sorted(pts[[2, 3]], key=lambda x: x[1])
return pts_sorted, is_vertical
class Quadrilateral(object):
"""
Helper for storing textlines that contains various helper functions.
"""
def __init__(self, pts: np.ndarray, text: str, prob: float, fg_r: int = 0, fg_g: int = 0, fg_b: int = 0, bg_r: int = 0, bg_g: int = 0, bg_b: int = 0):
self.pts, is_vertical = sort_pnts(pts)
if is_vertical:
self.direction = 'v'
else:
self.direction = 'h'
self.text = text
self.prob = prob
self.fg_r = fg_r
self.fg_g = fg_g
self.fg_b = fg_b
self.bg_r = bg_r
self.bg_g = bg_g
self.bg_b = bg_b
self.assigned_direction: str = None
self.textlines: List[Quadrilateral] = []
@functools.cached_property
def structure(self) -> List[np.ndarray]:
p1 = ((self.pts[0] + self.pts[1]) / 2).astype(int)
p2 = ((self.pts[2] + self.pts[3]) / 2).astype(int)
p3 = ((self.pts[1] + self.pts[2]) / 2).astype(int)
p4 = ((self.pts[3] + self.pts[0]) / 2).astype(int)
return [p1, p2, p3, p4]
@functools.cached_property
def valid(self) -> bool:
[l1a, l1b, l2a, l2b] = [a.astype(np.float32) for a in self.structure]
v1 = l1b - l1a
v2 = l2b - l2a
unit_vector_1 = v1 / np.linalg.norm(v1)
unit_vector_2 = v2 / np.linalg.norm(v2)
dot_product = np.dot(unit_vector_1, unit_vector_2)
angle = np.arccos(dot_product) * 180 / np.pi
return abs(angle - 90) < 10
@property
def fg_colors(self):
return np.array([self.fg_r, self.fg_g, self.fg_b])
@property
def bg_colors(self):
return np.array([self.bg_r, self.bg_g, self.bg_b])
@functools.cached_property
def aspect_ratio(self) -> float:
"""hor/ver"""
[l1a, l1b, l2a, l2b] = [a.astype(np.float32) for a in self.structure]
v1 = l1b - l1a
v2 = l2b - l2a
return np.linalg.norm(v2) / np.linalg.norm(v1)
@functools.cached_property
def font_size(self) -> float:
[l1a, l1b, l2a, l2b] = [a.astype(np.float32) for a in self.structure]
v1 = l1b - l1a
v2 = l2b - l2a
return min(np.linalg.norm(v2), np.linalg.norm(v1))
def width(self) -> int:
return self.aabb.w
def height(self) -> int:
return self.aabb.h
@functools.cached_property
def xyxy(self):
return self.aabb.x, self.aabb.y, self.aabb.x + self.aabb.w, self.aabb.y + self.aabb.h
def clip(self, width, height):
self.pts[:, 0] = np.clip(np.round(self.pts[:, 0]), 0, width)
self.pts[:, 1] = np.clip(np.round(self.pts[:, 1]), 0, height)
# @functools.cached_property
# def points(self):
# ans = [a.astype(np.float32) for a in self.structure]
# return [Point(a[0], a[1]) for a in ans]
@functools.cached_property
def aabb(self) -> BBox:
kq = self.pts
max_coord = np.max(kq, axis = 0)
min_coord = np.min(kq, axis = 0)
return BBox(min_coord[0], min_coord[1], max_coord[0] - min_coord[0], max_coord[1] - min_coord[1], self.text, self.prob, self.fg_r, self.fg_g, self.fg_b, self.bg_r, self.bg_g, self.bg_b)
def get_transformed_region(self, img, direction, textheight) -> np.ndarray:
[l1a, l1b, l2a, l2b] = [a.astype(np.float32) for a in self.structure]
v_vec = l1b - l1a
h_vec = l2b - l2a
ratio = np.linalg.norm(v_vec) / np.linalg.norm(h_vec)
src_pts = self.pts.astype(np.float32)
self.assigned_direction = direction
if direction == 'h':
h = max(int(textheight), 2)
w = max(int(round(textheight / ratio)), 2)
dst_pts = np.array([[0, 0], [w - 1, 0], [w - 1, h - 1], [0, h - 1]]).astype(np.float32)
M, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
region = cv2.warpPerspective(img, M, (w, h))
return region
elif direction == 'v':
w = max(int(textheight), 2)
h = max(int(round(textheight * ratio)), 2)
dst_pts = np.array([[0, 0], [w - 1, 0], [w - 1, h - 1], [0, h - 1]]).astype(np.float32)
M, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
region = cv2.warpPerspective(img, M, (w, h))
region = cv2.rotate(region, cv2.ROTATE_90_COUNTERCLOCKWISE)
return region
@functools.cached_property
def is_axis_aligned(self) -> bool:
[l1a, l1b, l2a, l2b] = [a.astype(np.float32) for a in self.structure]
v1 = l1b - l1a
v2 = l2b - l2a
e1 = np.array([0, 1])
e2 = np.array([1, 0])
unit_vector_1 = v1 / np.linalg.norm(v1)
unit_vector_2 = v2 / np.linalg.norm(v2)
if abs(np.dot(unit_vector_1, e1)) < 1e-2 or abs(np.dot(unit_vector_1, e2)) < 1e-2:
return True
return False
@functools.cached_property
def is_approximate_axis_aligned(self) -> bool:
[l1a, l1b, l2a, l2b] = [a.astype(np.float32) for a in self.structure]
v1 = l1b - l1a
v2 = l2b - l2a
e1 = np.array([0, 1])
e2 = np.array([1, 0])
unit_vector_1 = v1 / np.linalg.norm(v1)
unit_vector_2 = v2 / np.linalg.norm(v2)
if abs(np.dot(unit_vector_1, e1)) < 0.05 or abs(np.dot(unit_vector_1, e2)) < 0.05 or abs(np.dot(unit_vector_2, e1)) < 0.05 or abs(np.dot(unit_vector_2, e2)) < 0.05:
return True
return False
@functools.cached_property
def cosangle(self) -> float:
[l1a, l1b, l2a, l2b] = [a.astype(np.float32) for a in self.structure]
v1 = l1b - l1a
e2 = np.array([1, 0])
unit_vector_1 = v1 / np.linalg.norm(v1)
return np.dot(unit_vector_1, e2)
@functools.cached_property
def angle(self) -> float:
return np.fmod(np.arccos(self.cosangle) + np.pi, np.pi)
@functools.cached_property
def centroid(self) -> np.ndarray:
return np.average(self.pts, axis = 0)
def distance_to_point(self, p: np.ndarray) -> float:
d = 1.0e20
for i in range(4):
d = min(d, distance_point_point(p, self.pts[i]))
d = min(d, distance_point_lineseg(p, self.pts[i], self.pts[(i + 1) % 4]))
return d
@functools.cached_property
def polygon(self) -> Polygon:
return MultiPoint([tuple(self.pts[0]), tuple(self.pts[1]), tuple(self.pts[2]), tuple(self.pts[3])]).convex_hull
@functools.cached_property
def area(self) -> float:
return self.polygon.area
def poly_distance(self, other) -> float:
return self.polygon.distance(other.polygon)
def distance(self, other, rho = 0.5) -> float:
return self.distance_impl(other, rho)# + 1000 * abs(self.angle - other.angle)
def distance_impl(self, other, rho = 0.5) -> float:
# assert self.assigned_direction == other.assigned_direction
#return gjk_distance(self.points, other.points)
# b1 = self.aabb
# b2 = b2.aabb
# x1, y1, w1, h1 = b1.x, b1.y, b1.w, b1.h
# x2, y2, w2, h2 = b2.x, b2.y, b2.w, b2.h
# return rect_distance(x1, y1, x1 + w1, y1 + h1, x2, y2, x2 + w2, y2 + h2)
pattern = ''
if self.assigned_direction == 'h':
pattern = 'h_left'
else:
pattern = 'v_top'
fs = max(self.font_size, other.font_size)
if self.assigned_direction == 'h':
poly1 = MultiPoint([tuple(self.pts[0]), tuple(self.pts[3]), tuple(other.pts[0]), tuple(other.pts[3])]).convex_hull
poly2 = MultiPoint([tuple(self.pts[2]), tuple(self.pts[1]), tuple(other.pts[2]), tuple(other.pts[1])]).convex_hull
poly3 = MultiPoint([
tuple(self.structure[0]),
tuple(self.structure[1]),
tuple(other.structure[0]),
tuple(other.structure[1]),
]).convex_hull
dist1 = poly1.area / fs
dist2 = poly2.area / fs
dist3 = poly3.area / fs
if dist1 < fs * rho:
pattern = 'h_left'
if dist2 < fs * rho and dist2 < dist1:
pattern = 'h_right'
if dist3 < fs * rho and dist3 < dist1 and dist3 < dist2:
pattern = 'h_middle'
if pattern == 'h_left':
return dist(self.pts[0][0], self.pts[0][1], other.pts[0][0], other.pts[0][1])
elif pattern == 'h_right':
return dist(self.pts[1][0], self.pts[1][1], other.pts[1][0], other.pts[1][1])
else:
return dist(self.structure[0][0], self.structure[0][1], other.structure[0][0], other.structure[0][1])
else:
poly1 = MultiPoint([tuple(self.pts[0]), tuple(self.pts[1]), tuple(other.pts[0]), tuple(other.pts[1])]).convex_hull
poly2 = MultiPoint([tuple(self.pts[2]), tuple(self.pts[3]), tuple(other.pts[2]), tuple(other.pts[3])]).convex_hull
dist1 = poly1.area / fs
dist2 = poly2.area / fs
if dist1 < fs * rho:
pattern = 'v_top'
if dist2 < fs * rho and dist2 < dist1:
pattern = 'v_bottom'
if pattern == 'v_top':
return dist(self.pts[0][0], self.pts[0][1], other.pts[0][0], other.pts[0][1])
else:
return dist(self.pts[2][0], self.pts[2][1], other.pts[2][0], other.pts[2][1])
def copy(self, new_pts: np.ndarray):
return Quadrilateral(new_pts, self.text, self.prob, *self.fg_colors, *self.bg_colors)
# def merge_quadrilaterals(q1: Quadrilateral, q2: Quadrilateral):
# min_rect = np.array(Polygon([*q1.pts, *q2.pts]).minimum_rotated_rectangle.exterior.coords[:4])
# if q1.centroid[0] < q2.centroid[0] or q1.centroid[1] < q1.centroid[1]:
# text = q1.text + ' ' + q2.text
# # if q1.centroid[0] < q2.centroid[0]:
# # min_rect = np.array([q1.pts[0], q2.pts[1], q2.pts[2], q1.pts[3]])
# else:
# text = q2.text + ' ' + q1.text
# prob = (q1.prob + q2.prob) / 2
# fg_colors = (q1.fg_colors + q2.fg_colors) // 2
# bg_colors = (q1.bg_colors + q2.bg_colors) // 2
# return Quadrilateral(min_rect, text, prob, *fg_colors, *bg_colors)
def dist(x1, y1, x2, y2):
return np.sqrt((x1 - x2)**2 + (y1 - y2)**2)
def rect_distance(x1, y1, x1b, y1b, x2, y2, x2b, y2b):
left = x2b < x1
right = x1b < x2
bottom = y2b < y1
top = y1b < y2
if top and left:
return dist(x1, y1b, x2b, y2)
elif left and bottom:
return dist(x1, y1, x2b, y2b)
elif bottom and right:
return dist(x1b, y1, x2, y2b)
elif right and top:
return dist(x1b, y1b, x2, y2)
elif left:
return x1 - x2b
elif right:
return x2 - x1b
elif bottom:
return y1 - y2b
elif top:
return y2 - y1b
else: # rectangles intersect
return 0
def distance_point_point(a: np.ndarray, b: np.ndarray) -> float:
return np.linalg.norm(a - b)
# from https://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment
def distance_point_lineseg(p: np.ndarray, p1: np.ndarray, p2: np.ndarray):
x = p[0]
y = p[1]
x1 = p1[0]
y1 = p1[1]
x2 = p2[0]
y2 = p2[1]
A = x - x1
B = y - y1
C = x2 - x1
D = y2 - y1
dot = A * C + B * D
len_sq = C * C + D * D
param = -1
if len_sq != 0:
param = dot / len_sq
if param < 0:
xx = x1
yy = y1
elif param > 1:
xx = x2
yy = y2
else:
xx = x1 + param * C
yy = y1 + param * D
dx = x - xx
dy = y - yy
return np.sqrt(dx * dx + dy * dy)
def quadrilateral_can_merge_region(a: Quadrilateral, b: Quadrilateral, ratio = 1.9, discard_connection_gap = 2, char_gap_tolerance = 0.6, char_gap_tolerance2 = 1.5, font_size_ratio_tol = 1.5, aspect_ratio_tol = 2) -> bool:
b1 = a.aabb
b2 = b.aabb
char_size = min(a.font_size, b.font_size)
x1, y1, w1, h1 = b1.x, b1.y, b1.w, b1.h
x2, y2, w2, h2 = b2.x, b2.y, b2.w, b2.h
# dist = rect_distance(x1, y1, x1 + w1, y1 + h1, x2, y2, x2 + w2, y2 + h2)
p1 = Polygon(a.pts)
p2 = Polygon(b.pts)
dist = p1.distance(p2)
if dist > discard_connection_gap * char_size:
return False
if max(a.font_size, b.font_size) / char_size > font_size_ratio_tol:
return False
if a.aspect_ratio > aspect_ratio_tol and b.aspect_ratio < 1. / aspect_ratio_tol:
return False
if b.aspect_ratio > aspect_ratio_tol and a.aspect_ratio < 1. / aspect_ratio_tol:
return False
a_aa = a.is_approximate_axis_aligned
b_aa = b.is_approximate_axis_aligned
if a_aa and b_aa:
if dist < char_size * char_gap_tolerance:
if abs(x1 + w1 // 2 - (x2 + w2 // 2)) < char_gap_tolerance2:
return True
if w1 > h1 * ratio and h2 > w2 * ratio:
return False
if w2 > h2 * ratio and h1 > w1 * ratio:
return False
if w1 > h1 * ratio or w2 > h2 * ratio : # h
return abs(x1 - x2) < char_size * char_gap_tolerance2 or abs(x1 + w1 - (x2 + w2)) < char_size * char_gap_tolerance2
elif h1 > w1 * ratio or h2 > w2 * ratio : # v
return abs(y1 - y2) < char_size * char_gap_tolerance2 or abs(y1 + h1 - (y2 + h2)) < char_size * char_gap_tolerance2
return False
else:
return False
if True:#not a_aa and not b_aa:
if abs(a.angle - b.angle) < 15 * np.pi / 180:
fs_a = a.font_size
fs_b = b.font_size
fs = min(fs_a, fs_b)
if a.poly_distance(b) > fs * char_gap_tolerance2:
return False
if abs(fs_a - fs_b) / fs > 0.25:
return False
return True
return False
def quadrilateral_can_merge_region_coarse(a: Quadrilateral, b: Quadrilateral, discard_connection_gap = 2, font_size_ratio_tol = 0.7) -> bool:
if a.assigned_direction != b.assigned_direction:
return False
if abs(a.angle - b.angle) > 15 * np.pi / 180:
return False
fs_a = a.font_size
fs_b = b.font_size
fs = min(fs_a, fs_b)
if abs(fs_a - fs_b) / fs > font_size_ratio_tol:
return False
fs = max(fs_a, fs_b)
dist = a.poly_distance(b)
if dist > discard_connection_gap * fs:
return False
return True
def findNextPowerOf2(n):
i = 0
while n != 0:
i += 1
n = n >> 1
return 1 << i
class Point:
def __init__(self, x = 0, y = 0):
self.x = x
self.y = y
def length2(self) -> float:
return self.x * self.x + self.y * self.y
def length(self) -> float:
return np.sqrt(self.length2())
def __str__(self):
return f'({self.x}, {self.y})'
def __add__(self, other):
x = self.x + other.x
y = self.y + other.y
return Point(x, y)
def __sub__(self, other):
x = self.x - other.x
y = self.y - other.y
return Point(x, y)
def __mul__(self, other):
if isinstance(other, Point):
return self.x * other.x + self.y * other.y
else:
return Point(self.x * other, self.y * other)
def __truediv__(self, other):
return self.x * other.y - self.y * other.x
def neg(self):
return Point(-self.x, -self.y)
def normalize(self):
return self * (1. / self.length())
def center_of_points(pts: List[Point]) -> Point:
ans = Point()
for p in pts:
ans.x += p.x
ans.y += p.y
ans.x /= len(pts)
ans.y /= len(pts)
return ans
def support_impl(pts: List[Point], d: Point) -> Point:
dist = -1.0e-20
ans = pts[0]
for p in pts:
proj = p * d
if proj > dist:
dist = proj
ans = p
return ans
def support(a: List[Point], b: List[Point], d: Point) -> Point:
return support_impl(a, d) - support_impl(b, d.neg())
def cross(a: Point, b: Point, c: Point) -> Point:
return b * (a * c) - a * (b * c)
def closest_point_to_origin(a: Point, b: Point) -> Point:
da = a.length()
db = b.length()
dist = abs(a / b) / (a - b).length()
ab = b - a
ba = a - b
ao = a.neg()
bo = b.neg()
if ab * ao > 0 and ba * bo > 0:
return cross(ab, ao, ab).normalize() * dist
return a.neg() if da < db else b.neg()
def dcmp(a) -> bool:
if abs(a) < 1e-8:
return False
return True
def gjk_distance(s1: List[Point], s2: List[Point]) -> float:
d = center_of_points(s2) - center_of_points(s1)
a = support(s1, s2, d)
b = support(s1, s2, d.neg())
d = closest_point_to_origin(a, b)
s = [a, b]
for _ in range(8):
c = support(s1, s2, d)
a = s.pop()
b = s.pop()
da = d * a
db = d * b
dc = d * c
if not dcmp(dc - da) or not dcmp(dc - db):
return d.length()
p1 = closest_point_to_origin(a, c)
p2 = closest_point_to_origin(b, c)
if p1.length2() < p2.length2():
s.append(a)
d = p1
else:
s.append(b)
d = p2
s.append(c)
return 0
def color_difference(rgb1: List, rgb2: List) -> float:
# https://en.wikipedia.org/wiki/Color_difference#CIE76
color1 = np.array(rgb1, dtype=np.uint8).reshape(1, 1, 3)
color2 = np.array(rgb2, dtype=np.uint8).reshape(1, 1, 3)
diff = cv2.cvtColor(color1, cv2.COLOR_RGB2LAB).astype(np.float32) - cv2.cvtColor(color2, cv2.COLOR_RGB2LAB).astype(np.float32)
diff[..., 0] *= 0.392
diff = np.linalg.norm(diff, axis=2)
return diff.item()
def rgb2hex(r,g,b):
return "#{:02x}{:02x}{:02x}".format(r,g,b)
def hex2rgb(h):
h = h.lstrip('#')
return tuple(int(h[i:i+2], 16) for i in (0, 2, 4))
def get_color_name(rgb: List[int]) -> str:
try:
# TODO: Maybe replace with offline alternative
url = f'https://www.thecolorapi.com/id?format=json&rgb={rgb[0]},{rgb[1]},{rgb[2]}'
response = requests.get(url)
if response.status_code == 200:
return json.loads(response.text)['name']['value']
else:
return 'Unnamed'
except Exception:
return 'Unnamed'
def square_pad_resize(img: np.ndarray, tgt_size: int):
h, w = img.shape[:2]
pad_h, pad_w = 0, 0
# make square image
if w < h:
pad_w = h - w
w += pad_w
elif h < w:
pad_h = w - h
h += pad_h
pad_size = tgt_size - h
if pad_size > 0:
pad_h += pad_size
pad_w += pad_size
if pad_h > 0 or pad_w > 0:
img = cv2.copyMakeBorder(img, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT)
down_scale_ratio = tgt_size / img.shape[0]
assert down_scale_ratio <= 1
if down_scale_ratio < 1:
img = cv2.resize(img, (tgt_size, tgt_size), interpolation=cv2.INTER_LINEAR)
return img, down_scale_ratio, pad_h, pad_w
def det_rearrange_forward(
img: np.ndarray,
dbnet_batch_forward: Callable[[np.ndarray, str], Tuple[np.ndarray, np.ndarray]],
tgt_size: int = 1280,
max_batch_size: int = 4,
device='cuda', verbose=False):
'''
Rearrange image to square batches before feeding into network if following conditions are satisfied: \n
1. Extreme aspect ratio
2. Is too tall or wide for detect size (tgt_size)
Returns:
DBNet output, mask or None, None if rearrangement is not required
'''
def _unrearrange(patch_lst: List[np.ndarray], transpose: bool, channel=1, pad_num=0):
_psize = _h = patch_lst[0].shape[-1]
_step = int(ph_step * _psize / patch_size)
_pw = int(_psize / pw_num)
_h = int(_pw / w * h)
tgtmap = np.zeros((channel, _h, _pw), dtype=np.float32)
num_patches = len(patch_lst) * pw_num - pad_num
for ii, p in enumerate(patch_lst):
if transpose:
p = einops.rearrange(p, 'c h w -> c w h')
for jj in range(pw_num):
pidx = ii * pw_num + jj
rel_t = rel_step_list[pidx]
t = int(round(rel_t * _h))
b = min(t + _psize, _h)
l = jj * _pw
r = l + _pw
tgtmap[..., t: b, :] += p[..., : b - t, l: r]
if pidx > 0:
interleave = _psize - _step
tgtmap[..., t: t+interleave, :] /= 2.
if pidx >= num_patches - 1:
break
if transpose:
tgtmap = einops.rearrange(tgtmap, 'c h w -> c w h')
return tgtmap[None, ...]
def _patch2batches(patch_lst: List[np.ndarray], p_num: int, transpose: bool):
if transpose:
patch_lst = einops.rearrange(patch_lst, '(p_num pw_num) ph pw c -> p_num (pw_num pw) ph c', p_num=p_num)
else:
patch_lst = einops.rearrange(patch_lst, '(p_num pw_num) ph pw c -> p_num ph (pw_num pw) c', p_num=p_num)
batches = [[]]
for ii, patch in enumerate(patch_lst):
if len(batches[-1]) >= max_batch_size:
batches.append([])
p, down_scale_ratio, pad_h, pad_w = square_pad_resize(patch, tgt_size=tgt_size)
assert pad_h == pad_w
pad_size = pad_h
batches[-1].append(p)
if verbose:
cv2.imwrite(f'result/rearrange_{ii}.png', p[..., ::-1])
return batches, down_scale_ratio, pad_size
h, w = img.shape[:2]
transpose = False
if h < w:
transpose = True
h, w = img.shape[1], img.shape[0]
asp_ratio = h / w
down_scale_ratio = h / tgt_size
# rearrange condition
require_rearrange = down_scale_ratio > 2.5 and asp_ratio > 3
if not require_rearrange:
return None, None
if verbose:
print(f'Input image will be rearranged to square batches before fed into network.\
\n Rearranged batches will be saved to result/rearrange_%d.png')
if transpose:
img = einops.rearrange(img, 'h w c -> w h c')
pw_num = max(int(np.floor(2 * tgt_size / w)), 2)
patch_size = ph = pw_num * w
ph_num = int(np.ceil(h / ph))
ph_step = int((h - ph) / (ph_num - 1)) if ph_num > 1 else 0
rel_step_list = []
patch_list = []
for ii in range(ph_num):
t = ii * ph_step
b = t + ph
rel_step_list.append(t / h)
patch_list.append(img[t: b])
p_num = int(np.ceil(ph_num / pw_num))
pad_num = p_num * pw_num - ph_num
for ii in range(pad_num):
patch_list.append(np.zeros_like(patch_list[0]))
batches, down_scale_ratio, pad_size = _patch2batches(patch_list, p_num, transpose)
db_lst, mask_lst = [], []
for batch in batches:
batch = np.array(batch)
db, mask = dbnet_batch_forward(batch, device=device)
for d, m in zip(db, mask):
if pad_size > 0:
paddb = int(db.shape[-1] / tgt_size * pad_size)
padmsk = int(mask.shape[-1] / tgt_size * pad_size)
d = d[..., :-paddb, :-paddb]
m = m[..., :-padmsk, :-padmsk]
db_lst.append(d)
mask_lst.append(m)
db = _unrearrange(db_lst, transpose, channel=2, pad_num=pad_num)
mask = _unrearrange(mask_lst, transpose, channel=1, pad_num=pad_num)
return db, mask
def main():
s1 = [Point(0, 0), Point(0, 2), Point(2, 2), Point(2, 0)]
offset = 0
s2 = [Point(1 + offset, 1 + offset), Point(1 + offset, 3 + offset), Point(3 + offset, 3 + offset + 1.5), Point(3 + offset + 1.5, 3 + offset), Point(3 + offset, 1 + offset)]
print(gjk_distance(s1, s2))
if __name__ == '__main__':
main()