File size: 37,487 Bytes
9dce458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
import os
from typing import List, Callable, Tuple
import numpy as np
import cv2
import functools
from PIL import Image
import tqdm
import requests
import sys
import hashlib
import re
import einops
import unicodedata
import json
from shapely import affinity
from shapely.geometry import Polygon, MultiPoint

try:
    functools.cached_property
except AttributeError: # Supports Python versions below 3.8
    from backports.cached_property import cached_property
    functools.cached_property = cached_property

MODULE_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
BASE_PATH = os.path.dirname(MODULE_PATH)

# Adapted from argparse.Namespace
class Context(dict):
    __getattr__ = dict.get
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

    def __init__(self, **kwargs):
        for name in kwargs:
            setattr(self, name, kwargs[name])

    def __eq__(self, other):
        if not isinstance(other, Context):
            return NotImplemented
        return vars(self) == vars(other)

    def __contains__(self, key):
        return key in self.keys()
    
    def __repr__(self):
        type_name = type(self).__name__
        arg_strings = []
        star_args = {}
        for arg in self._get_args():
            arg_strings.append(repr(arg))
        for name, value in self._get_kwargs():
            if name.isidentifier():
                arg_strings.append('%s=%r' % (name, value))
            else:
                star_args[name] = value
        if star_args:
            arg_strings.append('**%s' % repr(star_args))
        return '%s(%s)' % (type_name, ', '.join(arg_strings))

    def _get_kwargs(self):
        return list(self.items())

    def _get_args(self):
        return []

# TODO: Add TranslationContext for type linting

def atoi(text):
    return int(text) if text.isdigit() else text

def natural_sort(l: List[str]):
    return sorted(l, key=lambda text: [atoi(c) for c in re.split(r'(\d+)', text)])

def repeating_sequence(s: str):
    """Extracts repeating sequence from string. Example: 'abcabca' -> 'abc'."""
    for i in range(1, len(s) // 2 + 1):
        seq = s[:i]
        if seq * (len(s)//len(seq)) + seq[:len(s)%len(seq)] == s:
            return seq
    return s

def is_whitespace(ch):
    """Checks whether `chars` is a whitespace character."""
    # \t, \n, and \r are technically control characters but we treat them
    # as whitespace since they are generally considered as such.
    if ch == " " or ch == "\t" or ch == "\n" or ch == "\r" or ord(ch) == 0:
        return True
    cat = unicodedata.category(ch)
    if cat == "Zs":
        return True
    return False

def is_control(ch):
    """Checks whether `chars` is a control character."""
    # These are technically control characters but we count them as whitespace
    # characters.
    if ch == "\t" or ch == "\n" or ch == "\r":
        return False
    cat = unicodedata.category(ch)
    if cat in ("Cc", "Cf"):
        return True
    return False

def is_punctuation(ch):
    """Checks whether `chars` is a punctuation character."""
    cp = ord(ch)
    # We treat all non-letter/number ASCII as punctuation.
    # Characters such as "^", "$", and "`" are not in the Unicode
    # Punctuation class but we treat them as punctuation anyways, for
    # consistency.
    if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
        (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
        return True
    cat = unicodedata.category(ch)
    if cat.startswith("P"):
        return True
    return False

def is_valuable_char(ch):
    # return re.search(r'[^\d\W]', ch)
    return not is_punctuation(ch) and not is_control(ch) and not is_whitespace(ch) and not ch.isdigit()

def is_valuable_text(text):
    for ch in text:
        if is_valuable_char(ch):
            return True
    return False

def count_valuable_text(text: str) -> int:
    return sum([1 for ch in text if is_valuable_char(ch)])

def is_right_to_left_char(ch):
    """Checks whether the char belongs to a right to left alphabet."""
    # Arabic (from https://stackoverflow.com/a/49346768)
    if ('\u0600' <= ch <= '\u06FF' or
        '\u0750' <= ch <= '\u077F' or
        '\u08A0' <= ch <= '\u08FF' or
        '\uFB50' <= ch <= '\uFDFF' or
        '\uFE70' <= ch <= '\uFEFF' or
        '\U00010E60' <= ch <= '\U00010E7F' or
        '\U0001EE00' <= ch <= '\U0001EEFF'):
        return True
    return False

def replace_prefix(s: str, old: str, new: str):
    if s.startswith(old):
        s = new + s[len(old):]
    return s

def chunks(lst, n):
    """Yield successive n-sized chunks from lst."""
    for i in range(0, len(lst), n):
        yield lst[i:i+n]

def get_digest(file_path: str) -> str:
    h = hashlib.sha256()
    BUF_SIZE = 65536 

    with open(file_path, 'rb') as file:
        while True:
            # Reading is buffered, so we can read smaller chunks.
            chunk = file.read(BUF_SIZE)
            if not chunk:
                break
            h.update(chunk)
    return h.hexdigest()

def get_filename_from_url(url: str, default: str = '') -> str:
    m = re.search(r'/([^/?]+)[^/]*$', url)
    if m:
        return m.group(1)
    return default

def download_url_with_progressbar(url: str, path: str):
    if os.path.basename(path) in ('.', '') or os.path.isdir(path):
        new_filename = get_filename_from_url(url)
        if not new_filename:
            raise Exception('Could not determine filename')
        path = os.path.join(path, new_filename)

    headers = {}
    downloaded_size = 0
    if os.path.isfile(path):
        downloaded_size = os.path.getsize(path)
        headers['Range'] = 'bytes=%d-' % downloaded_size
        headers['Accept-Encoding'] = 'deflate'

    r = requests.get(url, stream=True, allow_redirects=True, headers=headers)
    if downloaded_size and r.headers.get('Accept-Ranges') != 'bytes':
        print('Error: Webserver does not support partial downloads. Restarting from the beginning.')
        r = requests.get(url, stream=True, allow_redirects=True)
        downloaded_size = 0
    total = int(r.headers.get('content-length', 0))
    chunk_size = 1024

    if r.ok:
        with tqdm.tqdm(
            desc=os.path.basename(path),
            initial=downloaded_size,
            total=total+downloaded_size,
            unit='iB',
            unit_scale=True,
            unit_divisor=chunk_size,
        ) as bar:
            with open(path, 'ab' if downloaded_size else 'wb') as f:
                is_tty = sys.stdout.isatty()
                downloaded_chunks = 0
                for data in r.iter_content(chunk_size=chunk_size):
                    size = f.write(data)
                    bar.update(size)

                    # Fallback for non TTYs so output still shown
                    downloaded_chunks += 1
                    if not is_tty and downloaded_chunks % 1000 == 0:
                        print(bar)
    else:
        raise Exception(f'Couldn\'t resolve url: "{url}" (Error: {r.status_code})')

def prompt_yes_no(query: str, default: bool = None) -> bool:
    s = '%s (%s/%s): ' % (query, 'Y' if default == True else 'y', 'N' if default == False else 'n')
    while True:
        inp = input(s).lower()
        if inp in ('yes', 'y'):
            return True
        elif inp in ('no', 'n'):
            return False
        elif default != None:
            return default
        if inp:
            print('Error: Please answer with "y" or "n"')

class AvgMeter():
    def __init__(self):
        self.reset()

    def reset(self):
        self.sum = 0
        self.count = 0

    def __call__(self, val = None):
        if val is not None:
            self.sum += val
            self.count += 1
        if self.count > 0:
            return self.sum / self.count
        else:
            return 0

def load_image(img: Image.Image):
    if img.mode == 'RGBA':
        # from https://stackoverflow.com/questions/9166400/convert-rgba-png-to-rgb-with-pil
        img.load()  # needed for split()
        background = Image.new('RGB', img.size, (255, 255, 255))
        alpha_ch = img.split()[3]
        background.paste(img, mask = alpha_ch)  # 3 is the alpha channel
        return np.array(background), alpha_ch
    elif img.mode == 'P':
        img = img.convert('RGBA')
        img.load()  # needed for split()
        background = Image.new('RGB', img.size, (255, 255, 255))
        alpha_ch = img.split()[3]
        background.paste(img, mask = alpha_ch)  # 3 is the alpha channel
        return np.array(background), alpha_ch
    else:
        return np.array(img.convert('RGB')), None

def dump_image(img_pil: Image.Image, img: np.ndarray, alpha_ch: Image.Image = None):
    if alpha_ch is not None:
        if img.shape[2] != 4 :
            img = np.concatenate([img.astype(np.uint8), np.array(alpha_ch).astype(np.uint8)[..., None]], axis = 2)
    else:
        img = img.astype(np.uint8)
    result = img_pil.convert('RGBA').resize((img.shape[1], img.shape[0]))
    result.paste(Image.fromarray(img), mask = alpha_ch)
    return result

def resize_keep_aspect(img, size):
    ratio = (float(size)/max(img.shape[0], img.shape[1]))
    new_width = round(img.shape[1] * ratio)
    new_height = round(img.shape[0] * ratio)
    return cv2.resize(img, (new_width, new_height), interpolation = cv2.INTER_LINEAR_EXACT)

def image_resize(image, width = None, height = None, inter = cv2.INTER_AREA):
    # initialize the dimensions of the image to be resized and
    # grab the image size
    dim = None
    (h, w) = image.shape[:2]

    # if both the width and height are None, then return the
    # original image
    if width is None and height is None:
        return image

    # check to see if the width is None
    if width is None:
        # calculate the ratio of the height and construct the
        # dimensions
        r = height / float(h)
        dim = (int(w * r), height)

    # otherwise, the height is None
    else:
        # calculate the ratio of the width and construct the
        # dimensions
        r = width / float(w)
        dim = (width, int(h * r))

    # resize the image
    resized = cv2.resize(image, dim, interpolation = inter)

    # return the resized image
    return resized

def resize_polygon(pts, xfact, yfact, origin='center'):
    poly = Polygon(pts)
    poly = affinity.scale(poly, xfact=xfact, yfact=yfact, origin=origin)
    dst_points = np.array(poly.exterior.coords[:4])
    return dst_points

class BBox(object):
    def __init__(self, x: int, y: int, w: int, h: int, text: str, prob: float, fg_r: int = 0, fg_g: int = 0, fg_b: int = 0, bg_r: int = 0, bg_g: int = 0, bg_b: int = 0):
        self.x = x
        self.y = y
        self.w = w
        self.h = h
        self.text = text
        self.prob = prob
        self.fg_r = fg_r
        self.fg_g = fg_g
        self.fg_b = fg_b
        self.bg_r = bg_r
        self.bg_g = bg_g
        self.bg_b = bg_b

    def width(self):
        return self.w

    def height(self):
        return self.h

    def to_points(self):
        tl, tr, br, bl = np.array([self.x, self.y]), np.array([self.x + self.w, self.y]), np.array([self.x + self.w, self.y+ self.h]), np.array([self.x, self.y + self.h])
        return tl, tr, br, bl

    @property
    def xywh(self):
        return np.array([self.x, self.y, self.w, self.h], dtype=np.int32)
    

def sort_pnts(pts: np.ndarray):
    '''

    Direction must be provided for sorting.

    The longer structure vector (mean of long side vectors) of input points is used to determine the direction.

    It is reliable enough for text lines but not for blocks.

    '''

    if isinstance(pts, List):
        pts = np.array(pts)
    assert isinstance(pts, np.ndarray) and pts.shape == (4, 2)
    pairwise_vec = (pts[:, None] - pts[None]).reshape((16, -1))
    pairwise_vec_norm = np.linalg.norm(pairwise_vec, axis=1)
    long_side_ids = np.argsort(pairwise_vec_norm)[[8, 10]]
    long_side_vecs = pairwise_vec[long_side_ids]
    inner_prod = (long_side_vecs[0] * long_side_vecs[1]).sum()
    if inner_prod < 0:
        long_side_vecs[0] = -long_side_vecs[0]
    struc_vec = np.abs(long_side_vecs.mean(axis=0))
    is_vertical = struc_vec[0] <= struc_vec[1]

    if is_vertical:
        pts = pts[np.argsort(pts[:, 1])]
        pts = pts[[*np.argsort(pts[:2, 0]), *np.argsort(pts[2:, 0])[::-1] + 2]]
        return pts, is_vertical
    else:
        pts = pts[np.argsort(pts[:, 0])]
        pts_sorted = np.zeros_like(pts)
        pts_sorted[[0, 3]] = sorted(pts[[0, 1]], key=lambda x: x[1])
        pts_sorted[[1, 2]] = sorted(pts[[2, 3]], key=lambda x: x[1])
        return pts_sorted, is_vertical


class Quadrilateral(object):
    """

    Helper for storing textlines that contains various helper functions.

    """
    def __init__(self, pts: np.ndarray, text: str, prob: float, fg_r: int = 0, fg_g: int = 0, fg_b: int = 0, bg_r: int = 0, bg_g: int = 0, bg_b: int = 0):    
        self.pts, is_vertical = sort_pnts(pts)
        if is_vertical:
            self.direction = 'v'
        else:
            self.direction = 'h'
        self.text = text
        self.prob = prob
        self.fg_r = fg_r
        self.fg_g = fg_g
        self.fg_b = fg_b
        self.bg_r = bg_r
        self.bg_g = bg_g
        self.bg_b = bg_b
        self.assigned_direction: str = None
        self.textlines: List[Quadrilateral] = []

    @functools.cached_property
    def structure(self) -> List[np.ndarray]:
        p1 = ((self.pts[0] + self.pts[1]) / 2).astype(int)
        p2 = ((self.pts[2] + self.pts[3]) / 2).astype(int)
        p3 = ((self.pts[1] + self.pts[2]) / 2).astype(int)
        p4 = ((self.pts[3] + self.pts[0]) / 2).astype(int)
        return [p1, p2, p3, p4]

    @functools.cached_property
    def valid(self) -> bool:
        [l1a, l1b, l2a, l2b] = [a.astype(np.float32) for a in self.structure]
        v1 = l1b - l1a
        v2 = l2b - l2a
        unit_vector_1 = v1 / np.linalg.norm(v1)
        unit_vector_2 = v2 / np.linalg.norm(v2)
        dot_product = np.dot(unit_vector_1, unit_vector_2)
        angle = np.arccos(dot_product) * 180 / np.pi
        return abs(angle - 90) < 10

    @property
    def fg_colors(self):
        return np.array([self.fg_r, self.fg_g, self.fg_b])

    @property
    def bg_colors(self):
        return np.array([self.bg_r, self.bg_g, self.bg_b])

    @functools.cached_property
    def aspect_ratio(self) -> float:
        """hor/ver"""
        [l1a, l1b, l2a, l2b] = [a.astype(np.float32) for a in self.structure]
        v1 = l1b - l1a
        v2 = l2b - l2a
        return np.linalg.norm(v2) / np.linalg.norm(v1)

    @functools.cached_property
    def font_size(self) -> float:
        [l1a, l1b, l2a, l2b] = [a.astype(np.float32) for a in self.structure]
        v1 = l1b - l1a
        v2 = l2b - l2a
        return min(np.linalg.norm(v2), np.linalg.norm(v1))

    def width(self) -> int:
        return self.aabb.w

    def height(self) -> int:
        return self.aabb.h

    @functools.cached_property
    def xyxy(self):
        return self.aabb.x, self.aabb.y, self.aabb.x + self.aabb.w, self.aabb.y + self.aabb.h

    def clip(self, width, height):
        self.pts[:, 0] = np.clip(np.round(self.pts[:, 0]), 0, width)
        self.pts[:, 1] = np.clip(np.round(self.pts[:, 1]), 0, height)

    # @functools.cached_property
    # def points(self):
    #     ans = [a.astype(np.float32) for a in self.structure]
    #     return [Point(a[0], a[1]) for a in ans]

    @functools.cached_property
    def aabb(self) -> BBox:
        kq = self.pts
        max_coord = np.max(kq, axis = 0)
        min_coord = np.min(kq, axis = 0)
        return BBox(min_coord[0], min_coord[1], max_coord[0] - min_coord[0], max_coord[1] - min_coord[1], self.text, self.prob, self.fg_r, self.fg_g, self.fg_b, self.bg_r, self.bg_g, self.bg_b)

    def get_transformed_region(self, img, direction, textheight) -> np.ndarray:
        [l1a, l1b, l2a, l2b] = [a.astype(np.float32) for a in self.structure]
        v_vec = l1b - l1a
        h_vec = l2b - l2a
        ratio = np.linalg.norm(v_vec) / np.linalg.norm(h_vec)
        src_pts = self.pts.astype(np.float32)
        self.assigned_direction = direction
        if direction == 'h':
            h = max(int(textheight), 2)
            w = max(int(round(textheight / ratio)), 2)
            dst_pts = np.array([[0, 0], [w - 1, 0], [w - 1, h - 1], [0, h - 1]]).astype(np.float32)
            M, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
            region = cv2.warpPerspective(img, M, (w, h))
            return region
        elif direction == 'v':
            w = max(int(textheight), 2)
            h = max(int(round(textheight * ratio)), 2)
            dst_pts = np.array([[0, 0], [w - 1, 0], [w - 1, h - 1], [0, h - 1]]).astype(np.float32)
            M, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
            region = cv2.warpPerspective(img, M, (w, h))
            region = cv2.rotate(region, cv2.ROTATE_90_COUNTERCLOCKWISE)
            return region

    @functools.cached_property
    def is_axis_aligned(self) -> bool:
        [l1a, l1b, l2a, l2b] = [a.astype(np.float32) for a in self.structure]
        v1 = l1b - l1a
        v2 = l2b - l2a
        e1 = np.array([0, 1])
        e2 = np.array([1, 0])
        unit_vector_1 = v1 / np.linalg.norm(v1)
        unit_vector_2 = v2 / np.linalg.norm(v2)
        if abs(np.dot(unit_vector_1, e1)) < 1e-2 or abs(np.dot(unit_vector_1, e2)) < 1e-2:
            return True
        return False

    @functools.cached_property
    def is_approximate_axis_aligned(self) -> bool:
        [l1a, l1b, l2a, l2b] = [a.astype(np.float32) for a in self.structure]
        v1 = l1b - l1a
        v2 = l2b - l2a
        e1 = np.array([0, 1])
        e2 = np.array([1, 0])
        unit_vector_1 = v1 / np.linalg.norm(v1)
        unit_vector_2 = v2 / np.linalg.norm(v2)
        if abs(np.dot(unit_vector_1, e1)) < 0.05 or abs(np.dot(unit_vector_1, e2)) < 0.05 or abs(np.dot(unit_vector_2, e1)) < 0.05 or abs(np.dot(unit_vector_2, e2)) < 0.05:
            return True
        return False

    @functools.cached_property
    def cosangle(self) -> float:
        [l1a, l1b, l2a, l2b] = [a.astype(np.float32) for a in self.structure]
        v1 = l1b - l1a
        e2 = np.array([1, 0])
        unit_vector_1 = v1 / np.linalg.norm(v1)
        return np.dot(unit_vector_1, e2)

    @functools.cached_property
    def angle(self) -> float:
        return np.fmod(np.arccos(self.cosangle) + np.pi, np.pi)

    @functools.cached_property
    def centroid(self) -> np.ndarray:
        return np.average(self.pts, axis = 0)

    def distance_to_point(self, p: np.ndarray) -> float:
        d = 1.0e20
        for i in range(4):
            d = min(d, distance_point_point(p, self.pts[i]))
            d = min(d, distance_point_lineseg(p, self.pts[i], self.pts[(i + 1) % 4]))
        return d

    @functools.cached_property
    def polygon(self) -> Polygon:
        return MultiPoint([tuple(self.pts[0]), tuple(self.pts[1]), tuple(self.pts[2]), tuple(self.pts[3])]).convex_hull

    @functools.cached_property
    def area(self) -> float:
        return self.polygon.area

    def poly_distance(self, other) -> float:
        return self.polygon.distance(other.polygon)

    def distance(self, other, rho = 0.5) -> float:
        return self.distance_impl(other, rho)# + 1000 * abs(self.angle - other.angle)

    def distance_impl(self, other, rho = 0.5) -> float:
        # assert self.assigned_direction == other.assigned_direction
        #return gjk_distance(self.points, other.points)
        # b1 = self.aabb
        # b2 = b2.aabb
        # x1, y1, w1, h1 = b1.x, b1.y, b1.w, b1.h
        # x2, y2, w2, h2 = b2.x, b2.y, b2.w, b2.h
        # return rect_distance(x1, y1, x1 + w1, y1 + h1, x2, y2, x2 + w2, y2 + h2)
        pattern = ''
        if self.assigned_direction == 'h':
            pattern = 'h_left'
        else:
            pattern = 'v_top'
        fs = max(self.font_size, other.font_size)
        if self.assigned_direction == 'h':
            poly1 = MultiPoint([tuple(self.pts[0]), tuple(self.pts[3]), tuple(other.pts[0]), tuple(other.pts[3])]).convex_hull
            poly2 = MultiPoint([tuple(self.pts[2]), tuple(self.pts[1]), tuple(other.pts[2]), tuple(other.pts[1])]).convex_hull
            poly3 = MultiPoint([
                tuple(self.structure[0]),
                tuple(self.structure[1]),
                tuple(other.structure[0]),
                tuple(other.structure[1]),
            ]).convex_hull
            dist1 = poly1.area / fs
            dist2 = poly2.area / fs
            dist3 = poly3.area / fs
            if dist1 < fs * rho:
                pattern = 'h_left'
            if dist2 < fs * rho and dist2 < dist1:
                pattern = 'h_right'
            if dist3 < fs * rho and dist3 < dist1 and dist3 < dist2:
                pattern = 'h_middle'
            if pattern == 'h_left':
                return dist(self.pts[0][0], self.pts[0][1], other.pts[0][0], other.pts[0][1])
            elif pattern == 'h_right':
                return dist(self.pts[1][0], self.pts[1][1], other.pts[1][0], other.pts[1][1])
            else:
                return dist(self.structure[0][0], self.structure[0][1], other.structure[0][0], other.structure[0][1])
        else:
            poly1 = MultiPoint([tuple(self.pts[0]), tuple(self.pts[1]), tuple(other.pts[0]), tuple(other.pts[1])]).convex_hull
            poly2 = MultiPoint([tuple(self.pts[2]), tuple(self.pts[3]), tuple(other.pts[2]), tuple(other.pts[3])]).convex_hull
            dist1 = poly1.area / fs
            dist2 = poly2.area / fs
            if dist1 < fs * rho:
                pattern = 'v_top'
            if dist2 < fs * rho and dist2 < dist1:
                pattern = 'v_bottom'
            if pattern == 'v_top':
                return dist(self.pts[0][0], self.pts[0][1], other.pts[0][0], other.pts[0][1])
            else:
                return dist(self.pts[2][0], self.pts[2][1], other.pts[2][0], other.pts[2][1])

    def copy(self, new_pts: np.ndarray):
        return Quadrilateral(new_pts, self.text, self.prob, *self.fg_colors, *self.bg_colors)

# def merge_quadrilaterals(q1: Quadrilateral, q2: Quadrilateral):
#     min_rect = np.array(Polygon([*q1.pts, *q2.pts]).minimum_rotated_rectangle.exterior.coords[:4])
#     if q1.centroid[0] < q2.centroid[0] or q1.centroid[1] < q1.centroid[1]:
#         text = q1.text + ' ' + q2.text
#         # if q1.centroid[0] < q2.centroid[0]:
#         #     min_rect = np.array([q1.pts[0], q2.pts[1], q2.pts[2], q1.pts[3]])
#     else:
#         text = q2.text + ' ' + q1.text
#     prob = (q1.prob + q2.prob) / 2
#     fg_colors = (q1.fg_colors + q2.fg_colors) // 2
#     bg_colors = (q1.bg_colors + q2.bg_colors) // 2
#     return Quadrilateral(min_rect, text, prob, *fg_colors, *bg_colors)

def dist(x1, y1, x2, y2):
    return np.sqrt((x1 - x2)**2 + (y1 - y2)**2)

def rect_distance(x1, y1, x1b, y1b, x2, y2, x2b, y2b):
    left = x2b < x1
    right = x1b < x2
    bottom = y2b < y1
    top = y1b < y2
    if top and left:
        return dist(x1, y1b, x2b, y2)
    elif left and bottom:
        return dist(x1, y1, x2b, y2b)
    elif bottom and right:
        return dist(x1b, y1, x2, y2b)
    elif right and top:
        return dist(x1b, y1b, x2, y2)
    elif left:
        return x1 - x2b
    elif right:
        return x2 - x1b
    elif bottom:
        return y1 - y2b
    elif top:
        return y2 - y1b
    else:             # rectangles intersect
        return 0

def distance_point_point(a: np.ndarray, b: np.ndarray) -> float:
    return np.linalg.norm(a - b)

# from https://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment
def distance_point_lineseg(p: np.ndarray, p1: np.ndarray, p2: np.ndarray):
    x = p[0]
    y = p[1]
    x1 = p1[0]
    y1 = p1[1]
    x2 = p2[0]
    y2 = p2[1]
    A = x - x1
    B = y - y1
    C = x2 - x1
    D = y2 - y1

    dot = A * C + B * D
    len_sq = C * C + D * D
    param = -1
    if len_sq != 0:
        param = dot / len_sq

    if param < 0:
        xx = x1
        yy = y1
    elif param > 1:
        xx = x2
        yy = y2
    else:
        xx = x1 + param * C
        yy = y1 + param * D

    dx = x - xx
    dy = y - yy
    return np.sqrt(dx * dx + dy * dy)


def quadrilateral_can_merge_region(a: Quadrilateral, b: Quadrilateral, ratio = 1.9, discard_connection_gap = 2, char_gap_tolerance = 0.6, char_gap_tolerance2 = 1.5, font_size_ratio_tol = 1.5, aspect_ratio_tol = 2) -> bool:
    b1 = a.aabb
    b2 = b.aabb
    char_size = min(a.font_size, b.font_size)
    x1, y1, w1, h1 = b1.x, b1.y, b1.w, b1.h
    x2, y2, w2, h2 = b2.x, b2.y, b2.w, b2.h
    # dist = rect_distance(x1, y1, x1 + w1, y1 + h1, x2, y2, x2 + w2, y2 + h2)
    p1 = Polygon(a.pts)
    p2 = Polygon(b.pts)
    dist = p1.distance(p2)
    if dist > discard_connection_gap * char_size:
        return False
    if max(a.font_size, b.font_size) / char_size > font_size_ratio_tol:
        return False
    if a.aspect_ratio > aspect_ratio_tol and b.aspect_ratio < 1. / aspect_ratio_tol:
        return False
    if b.aspect_ratio > aspect_ratio_tol and a.aspect_ratio < 1. / aspect_ratio_tol:
        return False
    a_aa = a.is_approximate_axis_aligned
    b_aa = b.is_approximate_axis_aligned
    if a_aa and b_aa:
        if dist < char_size * char_gap_tolerance:
            if abs(x1 + w1 // 2 - (x2 + w2 // 2)) < char_gap_tolerance2:
                return True
            if w1 > h1 * ratio and h2 > w2 * ratio:
                return False
            if w2 > h2 * ratio and h1 > w1 * ratio:
                return False
            if w1 > h1 * ratio or w2 > h2 * ratio : # h
                return abs(x1 - x2) < char_size * char_gap_tolerance2 or abs(x1 + w1 - (x2 + w2)) < char_size * char_gap_tolerance2
            elif h1 > w1 * ratio or h2 > w2 * ratio : # v
                return abs(y1 - y2) < char_size * char_gap_tolerance2 or abs(y1 + h1 - (y2 + h2)) < char_size * char_gap_tolerance2
            return False
        else:
            return False
    if True:#not a_aa and not b_aa:
        if abs(a.angle - b.angle) < 15 * np.pi / 180:
            fs_a = a.font_size
            fs_b = b.font_size
            fs = min(fs_a, fs_b)
            if a.poly_distance(b) > fs * char_gap_tolerance2:
                return False
            if abs(fs_a - fs_b) / fs > 0.25:
                return False
            return True
    return False

def quadrilateral_can_merge_region_coarse(a: Quadrilateral, b: Quadrilateral, discard_connection_gap = 2, font_size_ratio_tol = 0.7) -> bool:
    if a.assigned_direction != b.assigned_direction:
        return False
    if abs(a.angle - b.angle) > 15 * np.pi / 180:
        return False
    fs_a = a.font_size
    fs_b = b.font_size
    fs = min(fs_a, fs_b)
    if abs(fs_a - fs_b) / fs > font_size_ratio_tol:
        return False
    fs = max(fs_a, fs_b)
    dist = a.poly_distance(b)
    if dist > discard_connection_gap * fs:
        return False
    return True

def findNextPowerOf2(n):
    i = 0
    while n != 0:
        i += 1
        n = n >> 1
    return 1 << i

class Point:
    def __init__(self, x = 0, y = 0):
        self.x = x
        self.y = y

    def length2(self) -> float:
        return self.x * self.x + self.y * self.y

    def length(self) -> float:
        return np.sqrt(self.length2())

    def __str__(self):
        return f'({self.x}, {self.y})'

    def __add__(self, other):
        x = self.x + other.x
        y = self.y + other.y
        return Point(x, y)

    def __sub__(self, other):
        x = self.x - other.x
        y = self.y - other.y
        return Point(x, y)

    def __mul__(self, other):
        if isinstance(other, Point):
            return self.x * other.x + self.y * other.y
        else:
            return Point(self.x * other, self.y * other)

    def __truediv__(self, other):
        return self.x * other.y - self.y * other.x

    def neg(self):
        return Point(-self.x, -self.y)

    def normalize(self):
        return self * (1. / self.length())

def center_of_points(pts: List[Point]) -> Point:
    ans = Point()
    for p in pts:
        ans.x += p.x
        ans.y += p.y
    ans.x /= len(pts)
    ans.y /= len(pts)
    return ans

def support_impl(pts: List[Point], d: Point) -> Point:
    dist = -1.0e-20
    ans = pts[0]
    for p in pts:
        proj = p * d
        if proj > dist:
            dist = proj
            ans = p
    return ans

def support(a: List[Point], b: List[Point], d: Point) -> Point:
    return support_impl(a, d) - support_impl(b, d.neg())

def cross(a: Point, b: Point, c: Point) -> Point:
    return b * (a * c) - a * (b * c)

def closest_point_to_origin(a: Point, b: Point) -> Point:
    da = a.length()
    db = b.length()
    dist = abs(a / b) / (a - b).length()
    ab = b - a
    ba = a - b
    ao = a.neg()
    bo = b.neg()
    if ab * ao > 0 and ba * bo > 0:
        return cross(ab, ao, ab).normalize() * dist
    return a.neg() if da < db else b.neg()

def dcmp(a) -> bool:
    if abs(a) < 1e-8:
        return False
    return True

def gjk_distance(s1: List[Point], s2: List[Point]) -> float:
    d = center_of_points(s2) - center_of_points(s1)
    a = support(s1, s2, d)
    b = support(s1, s2, d.neg())
    d = closest_point_to_origin(a, b)
    s = [a, b]
    for _ in range(8):
        c = support(s1, s2, d)
        a = s.pop()
        b = s.pop()
        da = d * a
        db = d * b
        dc = d * c
        if not dcmp(dc - da) or not dcmp(dc - db):
            return d.length()
        p1 = closest_point_to_origin(a, c)
        p2 = closest_point_to_origin(b, c)
        if p1.length2() < p2.length2():
            s.append(a)
            d = p1
        else:
            s.append(b)
            d = p2
        s.append(c)
    return 0

def color_difference(rgb1: List, rgb2: List) -> float:
    # https://en.wikipedia.org/wiki/Color_difference#CIE76
    color1 = np.array(rgb1, dtype=np.uint8).reshape(1, 1, 3)
    color2 = np.array(rgb2, dtype=np.uint8).reshape(1, 1, 3)
    diff = cv2.cvtColor(color1, cv2.COLOR_RGB2LAB).astype(np.float32) - cv2.cvtColor(color2, cv2.COLOR_RGB2LAB).astype(np.float32)
    diff[..., 0] *= 0.392
    diff = np.linalg.norm(diff, axis=2) 
    return diff.item()

def rgb2hex(r,g,b):
    return "#{:02x}{:02x}{:02x}".format(r,g,b)

def hex2rgb(h):
    h = h.lstrip('#')
    return tuple(int(h[i:i+2], 16) for i in (0, 2, 4))

def get_color_name(rgb: List[int]) -> str:
        try:
            # TODO: Maybe replace with offline alternative
            url = f'https://www.thecolorapi.com/id?format=json&rgb={rgb[0]},{rgb[1]},{rgb[2]}'
            response = requests.get(url)
            if response.status_code == 200:
                return json.loads(response.text)['name']['value']
            else:
                return 'Unnamed'
        except Exception:
            return 'Unnamed'

def square_pad_resize(img: np.ndarray, tgt_size: int):
    h, w = img.shape[:2]
    pad_h, pad_w = 0, 0
    
    # make square image
    if w < h:
        pad_w = h - w
        w += pad_w
    elif h < w:
        pad_h = w - h
        h += pad_h

    pad_size = tgt_size - h
    if pad_size > 0:
        pad_h += pad_size
        pad_w += pad_size

    if pad_h > 0 or pad_w > 0:    
        img = cv2.copyMakeBorder(img, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT)

    down_scale_ratio = tgt_size / img.shape[0]
    assert down_scale_ratio <= 1
    if down_scale_ratio < 1:
        img = cv2.resize(img, (tgt_size, tgt_size), interpolation=cv2.INTER_LINEAR)

    return img, down_scale_ratio, pad_h, pad_w

def det_rearrange_forward(

    img: np.ndarray, 

    dbnet_batch_forward: Callable[[np.ndarray, str], Tuple[np.ndarray, np.ndarray]], 

    tgt_size: int = 1280, 

    max_batch_size: int = 4, 

    device='cuda', verbose=False):
    '''

    Rearrange image to square batches before feeding into network if following conditions are satisfied: \n

    1. Extreme aspect ratio

    2. Is too tall or wide for detect size (tgt_size)



    Returns:

        DBNet output, mask or None, None if rearrangement is not required

    '''

    def _unrearrange(patch_lst: List[np.ndarray], transpose: bool, channel=1, pad_num=0):
        _psize = _h = patch_lst[0].shape[-1]
        _step = int(ph_step * _psize / patch_size)
        _pw = int(_psize / pw_num)
        _h = int(_pw / w * h)
        tgtmap = np.zeros((channel, _h, _pw), dtype=np.float32)
        num_patches = len(patch_lst) * pw_num - pad_num
        for ii, p in enumerate(patch_lst):
            if transpose:
                p = einops.rearrange(p, 'c h w -> c w h')
            for jj in range(pw_num):
                pidx = ii * pw_num + jj
                rel_t = rel_step_list[pidx]
                t = int(round(rel_t * _h))
                b = min(t + _psize, _h)
                l = jj * _pw
                r = l + _pw
                tgtmap[..., t: b, :] += p[..., : b - t, l: r]
                if pidx > 0:
                    interleave = _psize - _step
                    tgtmap[..., t: t+interleave, :] /= 2.

                if pidx >= num_patches - 1:
                    break

        if transpose:
            tgtmap = einops.rearrange(tgtmap, 'c h w -> c w h')
        return tgtmap[None, ...]

    def _patch2batches(patch_lst: List[np.ndarray], p_num: int, transpose: bool):
        if transpose:
            patch_lst = einops.rearrange(patch_lst, '(p_num pw_num) ph pw c -> p_num (pw_num pw) ph c', p_num=p_num)
        else:
            patch_lst = einops.rearrange(patch_lst, '(p_num pw_num) ph pw c -> p_num ph (pw_num pw) c', p_num=p_num)
        
        batches = [[]]
        for ii, patch in enumerate(patch_lst):

            if len(batches[-1]) >= max_batch_size:
                batches.append([])
            p, down_scale_ratio, pad_h, pad_w = square_pad_resize(patch, tgt_size=tgt_size)

            assert pad_h == pad_w
            pad_size = pad_h
            batches[-1].append(p)
            if verbose:
                cv2.imwrite(f'result/rearrange_{ii}.png', p[..., ::-1])
        return batches, down_scale_ratio, pad_size

    h, w = img.shape[:2]
    transpose = False
    if h < w:
        transpose = True
        h, w = img.shape[1], img.shape[0]

    asp_ratio = h / w
    down_scale_ratio = h / tgt_size

    # rearrange condition
    require_rearrange = down_scale_ratio > 2.5 and asp_ratio > 3
    if not require_rearrange:
        return None, None

    if verbose:
        print(f'Input image will be rearranged to square batches before fed into network.\

            \n Rearranged batches will be saved to result/rearrange_%d.png')

    if transpose:
        img = einops.rearrange(img, 'h w c -> w h c')
    
    pw_num = max(int(np.floor(2 * tgt_size / w)), 2)
    patch_size = ph = pw_num * w

    ph_num = int(np.ceil(h / ph))
    ph_step = int((h - ph) / (ph_num - 1)) if ph_num > 1 else 0
    rel_step_list = []
    patch_list = []
    for ii in range(ph_num):
        t = ii * ph_step
        b = t + ph
        rel_step_list.append(t / h)
        patch_list.append(img[t: b])

    p_num = int(np.ceil(ph_num / pw_num))
    pad_num = p_num * pw_num - ph_num
    for ii in range(pad_num):
        patch_list.append(np.zeros_like(patch_list[0]))

    batches, down_scale_ratio, pad_size = _patch2batches(patch_list, p_num, transpose)

    db_lst, mask_lst = [], []
    for batch in batches:
        batch = np.array(batch)
        db, mask = dbnet_batch_forward(batch, device=device)

        for d, m in zip(db, mask):
            if pad_size > 0:
                paddb = int(db.shape[-1] / tgt_size * pad_size)
                padmsk = int(mask.shape[-1] / tgt_size * pad_size)
                d = d[..., :-paddb, :-paddb]
                m = m[..., :-padmsk, :-padmsk]
            db_lst.append(d)
            mask_lst.append(m)

    db = _unrearrange(db_lst, transpose, channel=2, pad_num=pad_num)
    mask = _unrearrange(mask_lst, transpose, channel=1, pad_num=pad_num)
    return db, mask


def main():
    s1 = [Point(0, 0), Point(0, 2), Point(2, 2), Point(2, 0)]
    offset = 0
    s2 = [Point(1 + offset, 1 + offset), Point(1 + offset, 3 + offset), Point(3 + offset, 3 + offset + 1.5), Point(3 + offset + 1.5, 3 + offset), Point(3 + offset, 1 + offset)]
    print(gjk_distance(s1, s2))

if __name__ == '__main__':
    main()