testapi / manga_translator /detection /dbnet_convnext.py
Sunday01's picture
up
9dce458
from functools import partial
import shutil
from typing import Callable, Optional, Tuple, Union
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
from torchvision.models import resnet34
import einops
import math
from timm.layers import trunc_normal_, AvgPool2dSame, DropPath, Mlp, GlobalResponseNormMlp, \
LayerNorm2d, LayerNorm, create_conv2d, get_act_layer, make_divisible, to_ntuple
class Downsample(nn.Module):
def __init__(self, in_chs, out_chs, stride=1, dilation=1):
super().__init__()
avg_stride = stride if dilation == 1 else 1
if stride > 1 or dilation > 1:
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False)
else:
self.pool = nn.Identity()
if in_chs != out_chs:
self.conv = create_conv2d(in_chs, out_chs, 1, stride=1)
else:
self.conv = nn.Identity()
def forward(self, x):
x = self.pool(x)
x = self.conv(x)
return x
class ConvNeXtBlock(nn.Module):
""" ConvNeXt Block
There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate
choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear
is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW.
"""
def __init__(
self,
in_chs: int,
out_chs: Optional[int] = None,
kernel_size: int = 7,
stride: int = 1,
dilation: Union[int, Tuple[int, int]] = (1, 1),
mlp_ratio: float = 4,
conv_mlp: bool = False,
conv_bias: bool = True,
use_grn: bool = False,
ls_init_value: Optional[float] = 1e-6,
act_layer: Union[str, Callable] = 'gelu',
norm_layer: Optional[Callable] = None,
drop_path: float = 0.,
):
"""
Args:
in_chs: Block input channels.
out_chs: Block output channels (same as in_chs if None).
kernel_size: Depthwise convolution kernel size.
stride: Stride of depthwise convolution.
dilation: Tuple specifying input and output dilation of block.
mlp_ratio: MLP expansion ratio.
conv_mlp: Use 1x1 convolutions for MLP and a NCHW compatible norm layer if True.
conv_bias: Apply bias for all convolution (linear) layers.
use_grn: Use GlobalResponseNorm in MLP (from ConvNeXt-V2)
ls_init_value: Layer-scale init values, layer-scale applied if not None.
act_layer: Activation layer.
norm_layer: Normalization layer (defaults to LN if not specified).
drop_path: Stochastic depth probability.
"""
super().__init__()
out_chs = out_chs or in_chs
dilation = to_ntuple(2)(dilation)
act_layer = get_act_layer(act_layer)
if not norm_layer:
norm_layer = LayerNorm2d if conv_mlp else LayerNorm
mlp_layer = partial(GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp)
self.use_conv_mlp = conv_mlp
self.conv_dw = create_conv2d(
in_chs,
out_chs,
kernel_size=kernel_size,
stride=stride,
dilation=dilation[0],
depthwise=True if out_chs >= in_chs else False,
bias=conv_bias,
)
self.norm = norm_layer(out_chs)
self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer)
self.gamma = nn.Parameter(ls_init_value * torch.ones(out_chs)) if ls_init_value is not None else None
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]:
self.shortcut = Downsample(in_chs, out_chs, stride=stride, dilation=dilation[0])
else:
self.shortcut = nn.Identity()
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
shortcut = x
x = self.conv_dw(x)
if self.use_conv_mlp:
x = self.norm(x)
x = self.mlp(x)
else:
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = self.mlp(x)
x = x.permute(0, 3, 1, 2)
if self.gamma is not None:
x = x.mul(self.gamma.reshape(1, -1, 1, 1))
x = self.drop_path(x) + self.shortcut(shortcut)
return x
class ConvNeXtStage(nn.Module):
def __init__(
self,
in_chs,
out_chs,
kernel_size=7,
stride=2,
depth=2,
dilation=(1, 1),
drop_path_rates=None,
ls_init_value=1.0,
conv_mlp=False,
conv_bias=True,
use_grn=False,
act_layer='gelu',
norm_layer=None,
norm_layer_cl=None
):
super().__init__()
self.grad_checkpointing = False
if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]:
ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1
pad = 'same' if dilation[1] > 1 else 0 # same padding needed if dilation used
self.downsample = nn.Sequential(
norm_layer(in_chs),
create_conv2d(
in_chs,
out_chs,
kernel_size=ds_ks,
stride=stride,
dilation=dilation[0],
padding=pad,
bias=conv_bias,
),
)
in_chs = out_chs
else:
self.downsample = nn.Identity()
drop_path_rates = drop_path_rates or [0.] * depth
stage_blocks = []
for i in range(depth):
stage_blocks.append(ConvNeXtBlock(
in_chs=in_chs,
out_chs=out_chs,
kernel_size=kernel_size,
dilation=dilation[1],
drop_path=drop_path_rates[i],
ls_init_value=ls_init_value,
conv_mlp=conv_mlp,
conv_bias=conv_bias,
use_grn=use_grn,
act_layer=act_layer,
norm_layer=norm_layer if conv_mlp else norm_layer_cl,
))
in_chs = out_chs
self.blocks = nn.Sequential(*stage_blocks)
def forward(self, x):
x = self.downsample(x)
x = self.blocks(x)
return x
class ConvNeXt(nn.Module):
r""" ConvNeXt
A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf
"""
def __init__(
self,
in_chans: int = 3,
num_classes: int = 1000,
global_pool: str = 'avg',
output_stride: int = 32,
depths: Tuple[int, ...] = (3, 3, 9, 3),
dims: Tuple[int, ...] = (96, 192, 384, 768),
kernel_sizes: Union[int, Tuple[int, ...]] = 7,
ls_init_value: Optional[float] = 1e-6,
stem_type: str = 'patch',
patch_size: int = 4,
head_init_scale: float = 1.,
head_norm_first: bool = False,
head_hidden_size: Optional[int] = None,
conv_mlp: bool = False,
conv_bias: bool = True,
use_grn: bool = False,
act_layer: Union[str, Callable] = 'gelu',
norm_layer: Optional[Union[str, Callable]] = None,
norm_eps: Optional[float] = None,
drop_rate: float = 0.,
drop_path_rate: float = 0.,
):
"""
Args:
in_chans: Number of input image channels.
num_classes: Number of classes for classification head.
global_pool: Global pooling type.
output_stride: Output stride of network, one of (8, 16, 32).
depths: Number of blocks at each stage.
dims: Feature dimension at each stage.
kernel_sizes: Depthwise convolution kernel-sizes for each stage.
ls_init_value: Init value for Layer Scale, disabled if None.
stem_type: Type of stem.
patch_size: Stem patch size for patch stem.
head_init_scale: Init scaling value for classifier weights and biases.
head_norm_first: Apply normalization before global pool + head.
head_hidden_size: Size of MLP hidden layer in head if not None and head_norm_first == False.
conv_mlp: Use 1x1 conv in MLP, improves speed for small networks w/ chan last.
conv_bias: Use bias layers w/ all convolutions.
use_grn: Use Global Response Norm (ConvNeXt-V2) in MLP.
act_layer: Activation layer type.
norm_layer: Normalization layer type.
drop_rate: Head pre-classifier dropout rate.
drop_path_rate: Stochastic depth drop rate.
"""
super().__init__()
assert output_stride in (8, 16, 32)
kernel_sizes = to_ntuple(4)(kernel_sizes)
if norm_layer is None:
norm_layer = LayerNorm2d
norm_layer_cl = norm_layer if conv_mlp else LayerNorm
if norm_eps is not None:
norm_layer = partial(norm_layer, eps=norm_eps)
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
else:
assert conv_mlp,\
'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input'
norm_layer_cl = norm_layer
if norm_eps is not None:
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
self.num_classes = num_classes
self.drop_rate = drop_rate
self.feature_info = []
assert stem_type in ('patch', 'overlap', 'overlap_tiered')
if stem_type == 'patch':
# NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4
self.stem = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size, bias=conv_bias),
norm_layer(dims[0]),
)
stem_stride = patch_size
else:
mid_chs = make_divisible(dims[0] // 2) if 'tiered' in stem_type else dims[0]
self.stem = nn.Sequential(
nn.Conv2d(in_chans, mid_chs, kernel_size=3, stride=2, padding=1, bias=conv_bias),
nn.Conv2d(mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias),
norm_layer(dims[0]),
)
stem_stride = 4
self.stages = nn.Sequential()
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
stages = []
prev_chs = dims[0]
curr_stride = stem_stride
dilation = 1
# 4 feature resolution stages, each consisting of multiple residual blocks
for i in range(4):
stride = 2 if curr_stride == 2 or i > 0 else 1
if curr_stride >= output_stride and stride > 1:
dilation *= stride
stride = 1
curr_stride *= stride
first_dilation = 1 if dilation in (1, 2) else 2
out_chs = dims[i]
stages.append(ConvNeXtStage(
prev_chs,
out_chs,
kernel_size=kernel_sizes[i],
stride=stride,
dilation=(first_dilation, dilation),
depth=depths[i],
drop_path_rates=dp_rates[i],
ls_init_value=ls_init_value,
conv_mlp=conv_mlp,
conv_bias=conv_bias,
use_grn=use_grn,
act_layer=act_layer,
norm_layer=norm_layer,
norm_layer_cl=norm_layer_cl,
))
prev_chs = out_chs
# NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')]
self.stages = nn.Sequential(*stages)
self.num_features = prev_chs
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^stem',
blocks=r'^stages\.(\d+)' if coarse else [
(r'^stages\.(\d+)\.downsample', (0,)), # blocks
(r'^stages\.(\d+)\.blocks\.(\d+)', None),
(r'^norm_pre', (99999,))
]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
for s in self.stages:
s.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head.fc
def forward_features(self, x):
x = self.stem(x)
x = self.stages(x)
return x
def _init_weights(module, name=None, head_init_scale=1.0):
if isinstance(module, nn.Conv2d):
trunc_normal_(module.weight, std=.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Linear):
trunc_normal_(module.weight, std=.02)
nn.init.zeros_(module.bias)
if name and 'head.' in name:
module.weight.data.mul_(head_init_scale)
module.bias.data.mul_(head_init_scale)
class UpconvSkip(nn.Module) :
def __init__(self, ch1, ch2, out_ch) -> None:
super().__init__()
self.conv = ConvNeXtBlock(
in_chs=ch1 + ch2,
out_chs=out_ch,
kernel_size=7,
dilation=1,
drop_path=0,
ls_init_value=1.0,
conv_mlp=False,
conv_bias=True,
use_grn=False,
act_layer='gelu',
norm_layer=LayerNorm,
)
self.upconv = nn.ConvTranspose2d(out_ch, out_ch, 2, 2, 0, 0)
def forward(self, x) :
x = self.conv(x)
x = self.upconv(x)
return x
class DBHead(nn.Module):
def __init__(self, in_channels, k = 50):
super().__init__()
self.k = k
self.binarize = nn.Sequential(
nn.Conv2d(in_channels, in_channels // 4, 3, padding=1),
#nn.BatchNorm2d(in_channels // 4),
nn.SiLU(inplace=True),
nn.ConvTranspose2d(in_channels // 4, in_channels // 4, 4, 2, 1),
#nn.BatchNorm2d(in_channels // 4),
nn.SiLU(inplace=True),
nn.ConvTranspose2d(in_channels // 4, 1, 4, 2, 1),
)
self.binarize.apply(self.weights_init)
self.thresh = self._init_thresh(in_channels)
self.thresh.apply(self.weights_init)
def forward(self, x):
shrink_maps = self.binarize(x)
threshold_maps = self.thresh(x)
if self.training:
binary_maps = self.step_function(shrink_maps.sigmoid(), threshold_maps)
y = torch.cat((shrink_maps, threshold_maps, binary_maps), dim=1)
else:
y = torch.cat((shrink_maps, threshold_maps), dim=1)
return y
def weights_init(self, m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.kaiming_normal_(m.weight.data)
elif classname.find('BatchNorm') != -1:
m.weight.data.fill_(1.)
m.bias.data.fill_(1e-4)
def _init_thresh(self, inner_channels, serial=False, smooth=False, bias=False):
in_channels = inner_channels
if serial:
in_channels += 1
self.thresh = nn.Sequential(
nn.Conv2d(in_channels, inner_channels // 4, 3, padding=1, bias=bias),
#nn.GroupNorm(inner_channels // 4),
nn.SiLU(inplace=True),
self._init_upsample(inner_channels // 4, inner_channels // 4, smooth=smooth, bias=bias),
#nn.GroupNorm(inner_channels // 4),
nn.SiLU(inplace=True),
self._init_upsample(inner_channels // 4, 1, smooth=smooth, bias=bias),
nn.Sigmoid())
return self.thresh
def _init_upsample(self, in_channels, out_channels, smooth=False, bias=False):
if smooth:
inter_out_channels = out_channels
if out_channels == 1:
inter_out_channels = in_channels
module_list = [
nn.Upsample(scale_factor=2, mode='bilinear'),
nn.Conv2d(in_channels, inter_out_channels, 3, 1, 1, bias=bias)]
if out_channels == 1:
module_list.append(nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=1, bias=True))
return nn.Sequential(module_list)
else:
return nn.ConvTranspose2d(in_channels, out_channels, 4, 2, 1)
def step_function(self, x, y):
return torch.reciprocal(1 + torch.exp(-self.k * (x - y)))
class DBNetConvNext(nn.Module) :
def __init__(self) :
super(DBNetConvNext, self).__init__()
self.backbone = ConvNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024])
self.conv_mask = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.SiLU(inplace=True),
nn.Conv2d(64, 32, kernel_size=3, padding=1), nn.SiLU(inplace=True),
nn.Conv2d(32, 1, kernel_size=1),
nn.Sigmoid()
)
self.down_conv1 = ConvNeXtStage(1024, 1024, depth = 2, norm_layer = LayerNorm2d)
self.down_conv2 = ConvNeXtStage(1024, 1024, depth = 2, norm_layer = LayerNorm2d)
self.upconv1 = UpconvSkip(0, 1024, 128)
self.upconv2 = UpconvSkip(128, 1024, 128)
self.upconv3 = UpconvSkip(128, 1024, 128)
self.upconv4 = UpconvSkip(128, 512, 128)
self.upconv5 = UpconvSkip(128, 256, 128)
self.upconv6 = UpconvSkip(128, 128, 64)
self.conv_db = DBHead(128)
def forward(self, x) :
# in 3@1536
x = self.backbone.stem(x) # 128@384
h4 = self.backbone.stages[0](x) # 128@384
h8 = self.backbone.stages[1](h4) # 256@192
h16 = self.backbone.stages[2](h8) # 512@96
h32 = self.backbone.stages[3](h16) # 1024@48
h64 = self.down_conv1(h32) # 1024@24
h128 = self.down_conv2(h64) # 1024@12
up128 = self.upconv1(h128)
up64 = self.upconv2(torch.cat([up128, h64], dim = 1))
up32 = self.upconv3(torch.cat([up64, h32], dim = 1))
up16 = self.upconv4(torch.cat([up32, h16], dim = 1))
up8 = self.upconv5(torch.cat([up16, h8], dim = 1))
up4 = self.upconv6(torch.cat([up8, h4], dim = 1))
return self.conv_db(up8), self.conv_mask(up4)
import os
from .default_utils import imgproc, dbnet_utils, craft_utils
from .common import OfflineDetector
from ..utils import TextBlock, Quadrilateral, det_rearrange_forward
MODEL = None
def det_batch_forward_default(batch: np.ndarray, device: str):
global MODEL
if isinstance(batch, list):
batch = np.array(batch)
batch = einops.rearrange(batch.astype(np.float32) / 127.5 - 1.0, 'n h w c -> n c h w')
batch = torch.from_numpy(batch).to(device)
with torch.no_grad():
db, mask = MODEL(batch)
db = db.sigmoid().cpu().numpy()
mask = mask.cpu().numpy()
return db, mask
class DBConvNextDetector(OfflineDetector):
_MODEL_MAPPING = {
'model': {
'url': '',
'hash': '',
'file': '.',
}
}
def __init__(self, *args, **kwargs):
os.makedirs(self.model_dir, exist_ok=True)
if os.path.exists('dbnet_convnext.ckpt'):
shutil.move('dbnet_convnext.ckpt', self._get_file_path('dbnet_convnext.ckpt'))
super().__init__(*args, **kwargs)
async def _load(self, device: str):
self.model = DBNetConvNext()
sd = torch.load(self._get_file_path('dbnet_convnext.ckpt'), map_location='cpu')
self.model.load_state_dict(sd['model'] if 'model' in sd else sd)
self.model.eval()
self.device = device
if device == 'cuda' or device == 'mps':
self.model = self.model.to(self.device)
global MODEL
MODEL = self.model
async def _unload(self):
del self.model
async def _infer(self, image: np.ndarray, detect_size: int, text_threshold: float, box_threshold: float,
unclip_ratio: float, verbose: bool = False):
# TODO: Move det_rearrange_forward to common.py and refactor
db, mask = det_rearrange_forward(image, det_batch_forward_default, detect_size, 4, device=self.device, verbose=verbose)
if db is None:
# rearrangement is not required, fallback to default forward
img_resized, target_ratio, _, pad_w, pad_h = imgproc.resize_aspect_ratio(cv2.bilateralFilter(image, 17, 80, 80), detect_size, cv2.INTER_LINEAR, mag_ratio = 1)
img_resized_h, img_resized_w = img_resized.shape[:2]
ratio_h = ratio_w = 1 / target_ratio
db, mask = det_batch_forward_default([img_resized], self.device)
else:
img_resized_h, img_resized_w = image.shape[:2]
ratio_w = ratio_h = 1
pad_h = pad_w = 0
self.logger.info(f'Detection resolution: {img_resized_w}x{img_resized_h}')
mask = mask[0, 0, :, :]
det = dbnet_utils.SegDetectorRepresenter(text_threshold, box_threshold, unclip_ratio=unclip_ratio)
# boxes, scores = det({'shape': [(img_resized.shape[0], img_resized.shape[1])]}, db)
boxes, scores = det({'shape':[(img_resized_h, img_resized_w)]}, db)
boxes, scores = boxes[0], scores[0]
if boxes.size == 0:
polys = []
else:
idx = boxes.reshape(boxes.shape[0], -1).sum(axis=1) > 0
polys, _ = boxes[idx], scores[idx]
polys = polys.astype(np.float64)
polys = craft_utils.adjustResultCoordinates(polys, ratio_w, ratio_h, ratio_net=1)
polys = polys.astype(np.int16)
textlines = [Quadrilateral(pts.astype(int), '', score) for pts, score in zip(polys, scores)]
textlines = list(filter(lambda q: q.area > 16, textlines))
mask_resized = cv2.resize(mask, (mask.shape[1] * 2, mask.shape[0] * 2), interpolation=cv2.INTER_LINEAR)
if pad_h > 0:
mask_resized = mask_resized[:-pad_h, :]
elif pad_w > 0:
mask_resized = mask_resized[:, :-pad_w]
raw_mask = np.clip(mask_resized * 255, 0, 255).astype(np.uint8)
# if verbose:
# img_bbox_raw = np.copy(image)
# for txtln in textlines:
# cv2.polylines(img_bbox_raw, [txtln.pts], True, color=(255, 0, 0), thickness=2)
# cv2.imwrite(f'result/bboxes_unfiltered.png', cv2.cvtColor(img_bbox_raw, cv2.COLOR_RGB2BGR))
return textlines, raw_mask, None
if __name__ == '__main__' :
net = DBNetConvNext().cuda()
img = torch.randn(2, 3, 1536, 1536).cuda()
ret1, ret2 = net.forward(img)
print(ret1.shape)
print(ret2.shape)