File size: 20,687 Bytes
9dce458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
from functools import partial
import shutil
from typing import Callable, Optional, Tuple, Union
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
from torchvision.models import resnet34
import einops
import math
from timm.layers import trunc_normal_, AvgPool2dSame, DropPath, Mlp, GlobalResponseNormMlp, \
LayerNorm2d, LayerNorm, create_conv2d, get_act_layer, make_divisible, to_ntuple
class Downsample(nn.Module):
def __init__(self, in_chs, out_chs, stride=1, dilation=1):
super().__init__()
avg_stride = stride if dilation == 1 else 1
if stride > 1 or dilation > 1:
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False)
else:
self.pool = nn.Identity()
if in_chs != out_chs:
self.conv = create_conv2d(in_chs, out_chs, 1, stride=1)
else:
self.conv = nn.Identity()
def forward(self, x):
x = self.pool(x)
x = self.conv(x)
return x
class ConvNeXtBlock(nn.Module):
""" ConvNeXt Block
There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate
choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear
is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW.
"""
def __init__(
self,
in_chs: int,
out_chs: Optional[int] = None,
kernel_size: int = 7,
stride: int = 1,
dilation: Union[int, Tuple[int, int]] = (1, 1),
mlp_ratio: float = 4,
conv_mlp: bool = False,
conv_bias: bool = True,
use_grn: bool = False,
ls_init_value: Optional[float] = 1e-6,
act_layer: Union[str, Callable] = 'gelu',
norm_layer: Optional[Callable] = None,
drop_path: float = 0.,
):
"""
Args:
in_chs: Block input channels.
out_chs: Block output channels (same as in_chs if None).
kernel_size: Depthwise convolution kernel size.
stride: Stride of depthwise convolution.
dilation: Tuple specifying input and output dilation of block.
mlp_ratio: MLP expansion ratio.
conv_mlp: Use 1x1 convolutions for MLP and a NCHW compatible norm layer if True.
conv_bias: Apply bias for all convolution (linear) layers.
use_grn: Use GlobalResponseNorm in MLP (from ConvNeXt-V2)
ls_init_value: Layer-scale init values, layer-scale applied if not None.
act_layer: Activation layer.
norm_layer: Normalization layer (defaults to LN if not specified).
drop_path: Stochastic depth probability.
"""
super().__init__()
out_chs = out_chs or in_chs
dilation = to_ntuple(2)(dilation)
act_layer = get_act_layer(act_layer)
if not norm_layer:
norm_layer = LayerNorm2d if conv_mlp else LayerNorm
mlp_layer = partial(GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp)
self.use_conv_mlp = conv_mlp
self.conv_dw = create_conv2d(
in_chs,
out_chs,
kernel_size=kernel_size,
stride=stride,
dilation=dilation[0],
depthwise=True if out_chs >= in_chs else False,
bias=conv_bias,
)
self.norm = norm_layer(out_chs)
self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer)
self.gamma = nn.Parameter(ls_init_value * torch.ones(out_chs)) if ls_init_value is not None else None
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]:
self.shortcut = Downsample(in_chs, out_chs, stride=stride, dilation=dilation[0])
else:
self.shortcut = nn.Identity()
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
shortcut = x
x = self.conv_dw(x)
if self.use_conv_mlp:
x = self.norm(x)
x = self.mlp(x)
else:
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = self.mlp(x)
x = x.permute(0, 3, 1, 2)
if self.gamma is not None:
x = x.mul(self.gamma.reshape(1, -1, 1, 1))
x = self.drop_path(x) + self.shortcut(shortcut)
return x
class ConvNeXtStage(nn.Module):
def __init__(
self,
in_chs,
out_chs,
kernel_size=7,
stride=2,
depth=2,
dilation=(1, 1),
drop_path_rates=None,
ls_init_value=1.0,
conv_mlp=False,
conv_bias=True,
use_grn=False,
act_layer='gelu',
norm_layer=None,
norm_layer_cl=None
):
super().__init__()
self.grad_checkpointing = False
if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]:
ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1
pad = 'same' if dilation[1] > 1 else 0 # same padding needed if dilation used
self.downsample = nn.Sequential(
norm_layer(in_chs),
create_conv2d(
in_chs,
out_chs,
kernel_size=ds_ks,
stride=stride,
dilation=dilation[0],
padding=pad,
bias=conv_bias,
),
)
in_chs = out_chs
else:
self.downsample = nn.Identity()
drop_path_rates = drop_path_rates or [0.] * depth
stage_blocks = []
for i in range(depth):
stage_blocks.append(ConvNeXtBlock(
in_chs=in_chs,
out_chs=out_chs,
kernel_size=kernel_size,
dilation=dilation[1],
drop_path=drop_path_rates[i],
ls_init_value=ls_init_value,
conv_mlp=conv_mlp,
conv_bias=conv_bias,
use_grn=use_grn,
act_layer=act_layer,
norm_layer=norm_layer if conv_mlp else norm_layer_cl,
))
in_chs = out_chs
self.blocks = nn.Sequential(*stage_blocks)
def forward(self, x):
x = self.downsample(x)
x = self.blocks(x)
return x
class ConvNeXt(nn.Module):
r""" ConvNeXt
A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf
"""
def __init__(
self,
in_chans: int = 3,
num_classes: int = 1000,
global_pool: str = 'avg',
output_stride: int = 32,
depths: Tuple[int, ...] = (3, 3, 9, 3),
dims: Tuple[int, ...] = (96, 192, 384, 768),
kernel_sizes: Union[int, Tuple[int, ...]] = 7,
ls_init_value: Optional[float] = 1e-6,
stem_type: str = 'patch',
patch_size: int = 4,
head_init_scale: float = 1.,
head_norm_first: bool = False,
head_hidden_size: Optional[int] = None,
conv_mlp: bool = False,
conv_bias: bool = True,
use_grn: bool = False,
act_layer: Union[str, Callable] = 'gelu',
norm_layer: Optional[Union[str, Callable]] = None,
norm_eps: Optional[float] = None,
drop_rate: float = 0.,
drop_path_rate: float = 0.,
):
"""
Args:
in_chans: Number of input image channels.
num_classes: Number of classes for classification head.
global_pool: Global pooling type.
output_stride: Output stride of network, one of (8, 16, 32).
depths: Number of blocks at each stage.
dims: Feature dimension at each stage.
kernel_sizes: Depthwise convolution kernel-sizes for each stage.
ls_init_value: Init value for Layer Scale, disabled if None.
stem_type: Type of stem.
patch_size: Stem patch size for patch stem.
head_init_scale: Init scaling value for classifier weights and biases.
head_norm_first: Apply normalization before global pool + head.
head_hidden_size: Size of MLP hidden layer in head if not None and head_norm_first == False.
conv_mlp: Use 1x1 conv in MLP, improves speed for small networks w/ chan last.
conv_bias: Use bias layers w/ all convolutions.
use_grn: Use Global Response Norm (ConvNeXt-V2) in MLP.
act_layer: Activation layer type.
norm_layer: Normalization layer type.
drop_rate: Head pre-classifier dropout rate.
drop_path_rate: Stochastic depth drop rate.
"""
super().__init__()
assert output_stride in (8, 16, 32)
kernel_sizes = to_ntuple(4)(kernel_sizes)
if norm_layer is None:
norm_layer = LayerNorm2d
norm_layer_cl = norm_layer if conv_mlp else LayerNorm
if norm_eps is not None:
norm_layer = partial(norm_layer, eps=norm_eps)
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
else:
assert conv_mlp,\
'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input'
norm_layer_cl = norm_layer
if norm_eps is not None:
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
self.num_classes = num_classes
self.drop_rate = drop_rate
self.feature_info = []
assert stem_type in ('patch', 'overlap', 'overlap_tiered')
if stem_type == 'patch':
# NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4
self.stem = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size, bias=conv_bias),
norm_layer(dims[0]),
)
stem_stride = patch_size
else:
mid_chs = make_divisible(dims[0] // 2) if 'tiered' in stem_type else dims[0]
self.stem = nn.Sequential(
nn.Conv2d(in_chans, mid_chs, kernel_size=3, stride=2, padding=1, bias=conv_bias),
nn.Conv2d(mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias),
norm_layer(dims[0]),
)
stem_stride = 4
self.stages = nn.Sequential()
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
stages = []
prev_chs = dims[0]
curr_stride = stem_stride
dilation = 1
# 4 feature resolution stages, each consisting of multiple residual blocks
for i in range(4):
stride = 2 if curr_stride == 2 or i > 0 else 1
if curr_stride >= output_stride and stride > 1:
dilation *= stride
stride = 1
curr_stride *= stride
first_dilation = 1 if dilation in (1, 2) else 2
out_chs = dims[i]
stages.append(ConvNeXtStage(
prev_chs,
out_chs,
kernel_size=kernel_sizes[i],
stride=stride,
dilation=(first_dilation, dilation),
depth=depths[i],
drop_path_rates=dp_rates[i],
ls_init_value=ls_init_value,
conv_mlp=conv_mlp,
conv_bias=conv_bias,
use_grn=use_grn,
act_layer=act_layer,
norm_layer=norm_layer,
norm_layer_cl=norm_layer_cl,
))
prev_chs = out_chs
# NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')]
self.stages = nn.Sequential(*stages)
self.num_features = prev_chs
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^stem',
blocks=r'^stages\.(\d+)' if coarse else [
(r'^stages\.(\d+)\.downsample', (0,)), # blocks
(r'^stages\.(\d+)\.blocks\.(\d+)', None),
(r'^norm_pre', (99999,))
]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
for s in self.stages:
s.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head.fc
def forward_features(self, x):
x = self.stem(x)
x = self.stages(x)
return x
def _init_weights(module, name=None, head_init_scale=1.0):
if isinstance(module, nn.Conv2d):
trunc_normal_(module.weight, std=.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Linear):
trunc_normal_(module.weight, std=.02)
nn.init.zeros_(module.bias)
if name and 'head.' in name:
module.weight.data.mul_(head_init_scale)
module.bias.data.mul_(head_init_scale)
class UpconvSkip(nn.Module) :
def __init__(self, ch1, ch2, out_ch) -> None:
super().__init__()
self.conv = ConvNeXtBlock(
in_chs=ch1 + ch2,
out_chs=out_ch,
kernel_size=7,
dilation=1,
drop_path=0,
ls_init_value=1.0,
conv_mlp=False,
conv_bias=True,
use_grn=False,
act_layer='gelu',
norm_layer=LayerNorm,
)
self.upconv = nn.ConvTranspose2d(out_ch, out_ch, 2, 2, 0, 0)
def forward(self, x) :
x = self.conv(x)
x = self.upconv(x)
return x
class DBHead(nn.Module):
def __init__(self, in_channels, k = 50):
super().__init__()
self.k = k
self.binarize = nn.Sequential(
nn.Conv2d(in_channels, in_channels // 4, 3, padding=1),
#nn.BatchNorm2d(in_channels // 4),
nn.SiLU(inplace=True),
nn.ConvTranspose2d(in_channels // 4, in_channels // 4, 4, 2, 1),
#nn.BatchNorm2d(in_channels // 4),
nn.SiLU(inplace=True),
nn.ConvTranspose2d(in_channels // 4, 1, 4, 2, 1),
)
self.binarize.apply(self.weights_init)
self.thresh = self._init_thresh(in_channels)
self.thresh.apply(self.weights_init)
def forward(self, x):
shrink_maps = self.binarize(x)
threshold_maps = self.thresh(x)
if self.training:
binary_maps = self.step_function(shrink_maps.sigmoid(), threshold_maps)
y = torch.cat((shrink_maps, threshold_maps, binary_maps), dim=1)
else:
y = torch.cat((shrink_maps, threshold_maps), dim=1)
return y
def weights_init(self, m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.kaiming_normal_(m.weight.data)
elif classname.find('BatchNorm') != -1:
m.weight.data.fill_(1.)
m.bias.data.fill_(1e-4)
def _init_thresh(self, inner_channels, serial=False, smooth=False, bias=False):
in_channels = inner_channels
if serial:
in_channels += 1
self.thresh = nn.Sequential(
nn.Conv2d(in_channels, inner_channels // 4, 3, padding=1, bias=bias),
#nn.GroupNorm(inner_channels // 4),
nn.SiLU(inplace=True),
self._init_upsample(inner_channels // 4, inner_channels // 4, smooth=smooth, bias=bias),
#nn.GroupNorm(inner_channels // 4),
nn.SiLU(inplace=True),
self._init_upsample(inner_channels // 4, 1, smooth=smooth, bias=bias),
nn.Sigmoid())
return self.thresh
def _init_upsample(self, in_channels, out_channels, smooth=False, bias=False):
if smooth:
inter_out_channels = out_channels
if out_channels == 1:
inter_out_channels = in_channels
module_list = [
nn.Upsample(scale_factor=2, mode='bilinear'),
nn.Conv2d(in_channels, inter_out_channels, 3, 1, 1, bias=bias)]
if out_channels == 1:
module_list.append(nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=1, bias=True))
return nn.Sequential(module_list)
else:
return nn.ConvTranspose2d(in_channels, out_channels, 4, 2, 1)
def step_function(self, x, y):
return torch.reciprocal(1 + torch.exp(-self.k * (x - y)))
class DBNetConvNext(nn.Module) :
def __init__(self) :
super(DBNetConvNext, self).__init__()
self.backbone = ConvNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024])
self.conv_mask = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.SiLU(inplace=True),
nn.Conv2d(64, 32, kernel_size=3, padding=1), nn.SiLU(inplace=True),
nn.Conv2d(32, 1, kernel_size=1),
nn.Sigmoid()
)
self.down_conv1 = ConvNeXtStage(1024, 1024, depth = 2, norm_layer = LayerNorm2d)
self.down_conv2 = ConvNeXtStage(1024, 1024, depth = 2, norm_layer = LayerNorm2d)
self.upconv1 = UpconvSkip(0, 1024, 128)
self.upconv2 = UpconvSkip(128, 1024, 128)
self.upconv3 = UpconvSkip(128, 1024, 128)
self.upconv4 = UpconvSkip(128, 512, 128)
self.upconv5 = UpconvSkip(128, 256, 128)
self.upconv6 = UpconvSkip(128, 128, 64)
self.conv_db = DBHead(128)
def forward(self, x) :
# in 3@1536
x = self.backbone.stem(x) # 128@384
h4 = self.backbone.stages[0](x) # 128@384
h8 = self.backbone.stages[1](h4) # 256@192
h16 = self.backbone.stages[2](h8) # 512@96
h32 = self.backbone.stages[3](h16) # 1024@48
h64 = self.down_conv1(h32) # 1024@24
h128 = self.down_conv2(h64) # 1024@12
up128 = self.upconv1(h128)
up64 = self.upconv2(torch.cat([up128, h64], dim = 1))
up32 = self.upconv3(torch.cat([up64, h32], dim = 1))
up16 = self.upconv4(torch.cat([up32, h16], dim = 1))
up8 = self.upconv5(torch.cat([up16, h8], dim = 1))
up4 = self.upconv6(torch.cat([up8, h4], dim = 1))
return self.conv_db(up8), self.conv_mask(up4)
import os
from .default_utils import imgproc, dbnet_utils, craft_utils
from .common import OfflineDetector
from ..utils import TextBlock, Quadrilateral, det_rearrange_forward
MODEL = None
def det_batch_forward_default(batch: np.ndarray, device: str):
global MODEL
if isinstance(batch, list):
batch = np.array(batch)
batch = einops.rearrange(batch.astype(np.float32) / 127.5 - 1.0, 'n h w c -> n c h w')
batch = torch.from_numpy(batch).to(device)
with torch.no_grad():
db, mask = MODEL(batch)
db = db.sigmoid().cpu().numpy()
mask = mask.cpu().numpy()
return db, mask
class DBConvNextDetector(OfflineDetector):
_MODEL_MAPPING = {
'model': {
'url': '',
'hash': '',
'file': '.',
}
}
def __init__(self, *args, **kwargs):
os.makedirs(self.model_dir, exist_ok=True)
if os.path.exists('dbnet_convnext.ckpt'):
shutil.move('dbnet_convnext.ckpt', self._get_file_path('dbnet_convnext.ckpt'))
super().__init__(*args, **kwargs)
async def _load(self, device: str):
self.model = DBNetConvNext()
sd = torch.load(self._get_file_path('dbnet_convnext.ckpt'), map_location='cpu')
self.model.load_state_dict(sd['model'] if 'model' in sd else sd)
self.model.eval()
self.device = device
if device == 'cuda' or device == 'mps':
self.model = self.model.to(self.device)
global MODEL
MODEL = self.model
async def _unload(self):
del self.model
async def _infer(self, image: np.ndarray, detect_size: int, text_threshold: float, box_threshold: float,
unclip_ratio: float, verbose: bool = False):
# TODO: Move det_rearrange_forward to common.py and refactor
db, mask = det_rearrange_forward(image, det_batch_forward_default, detect_size, 4, device=self.device, verbose=verbose)
if db is None:
# rearrangement is not required, fallback to default forward
img_resized, target_ratio, _, pad_w, pad_h = imgproc.resize_aspect_ratio(cv2.bilateralFilter(image, 17, 80, 80), detect_size, cv2.INTER_LINEAR, mag_ratio = 1)
img_resized_h, img_resized_w = img_resized.shape[:2]
ratio_h = ratio_w = 1 / target_ratio
db, mask = det_batch_forward_default([img_resized], self.device)
else:
img_resized_h, img_resized_w = image.shape[:2]
ratio_w = ratio_h = 1
pad_h = pad_w = 0
self.logger.info(f'Detection resolution: {img_resized_w}x{img_resized_h}')
mask = mask[0, 0, :, :]
det = dbnet_utils.SegDetectorRepresenter(text_threshold, box_threshold, unclip_ratio=unclip_ratio)
# boxes, scores = det({'shape': [(img_resized.shape[0], img_resized.shape[1])]}, db)
boxes, scores = det({'shape':[(img_resized_h, img_resized_w)]}, db)
boxes, scores = boxes[0], scores[0]
if boxes.size == 0:
polys = []
else:
idx = boxes.reshape(boxes.shape[0], -1).sum(axis=1) > 0
polys, _ = boxes[idx], scores[idx]
polys = polys.astype(np.float64)
polys = craft_utils.adjustResultCoordinates(polys, ratio_w, ratio_h, ratio_net=1)
polys = polys.astype(np.int16)
textlines = [Quadrilateral(pts.astype(int), '', score) for pts, score in zip(polys, scores)]
textlines = list(filter(lambda q: q.area > 16, textlines))
mask_resized = cv2.resize(mask, (mask.shape[1] * 2, mask.shape[0] * 2), interpolation=cv2.INTER_LINEAR)
if pad_h > 0:
mask_resized = mask_resized[:-pad_h, :]
elif pad_w > 0:
mask_resized = mask_resized[:, :-pad_w]
raw_mask = np.clip(mask_resized * 255, 0, 255).astype(np.uint8)
# if verbose:
# img_bbox_raw = np.copy(image)
# for txtln in textlines:
# cv2.polylines(img_bbox_raw, [txtln.pts], True, color=(255, 0, 0), thickness=2)
# cv2.imwrite(f'result/bboxes_unfiltered.png', cv2.cvtColor(img_bbox_raw, cv2.COLOR_RGB2BGR))
return textlines, raw_mask, None
if __name__ == '__main__' :
net = DBNetConvNext().cuda()
img = torch.randn(2, 3, 1536, 1536).cuda()
ret1, ret2 = net.forward(img)
print(ret1.shape)
print(ret2.shape)
|