Classification / app.py
Streetmarkets's picture
Update app.py
1c4aa87 verified
import gradio as gr
import open_clip
import torch
import requests
import numpy as np
from PIL import Image
from io import BytesIO
# Sidebar content
sidebar_markdown = """
Note, this demo can classify 200 items. If you didn't find what you're looking for, reach out to us on our [Community](https://join.slack.com/t/marqo-community/shared_invite/zt-2iab0260n-QJrZLUSOJYUifVxf964Gdw) and request an item to be added.
## Documentation
📚 [Blog Post](https://www.marqo.ai/blog/search-model-for-fashion)
📝 [Use Case Blog Post](https://www.marqo.ai/blog/ecommerce-image-classification-with-marqo-fashionclip)
## Code
💻 [GitHub Repo](https://github.com/marqo-ai/marqo-FashionCLIP)
🤝 [Google Colab](https://colab.research.google.com/drive/1nq978xFJjJcnyrJ2aE5l82GHAXOvTmfd?usp=sharing)
🤗 [Hugging Face Collection](https://huggingface.co/collections/Marqo/marqo-fashionclip-and-marqo-fashionsiglip-66b43f2d09a06ad2368d4af6)
"""
# List of fashion items and their IDs
categories = [
{"name": "Nettoyants visage", "id": 101},
{"name": "Exfoliants visage", "id": 102},
{"name": "Hydratants visage", "id": 103},
{"name": "Masques visage", "id": 104},
{"name": "Soins ciblés visage", "id": 105},
{"name": "Protection solaire visage", "id": 106},
{"name": "Nettoyants visage homme", "id": 107},
{"name": "Crèmes hydratantes homme", "id": 108},
{"name": "Soins après-rasage", "id": 109},
{"name": "Hydratants corps", "id": 110},
{"name": "Exfoliants corps", "id": 111},
{"name": "Soins fermeté & minceur", "id": 112},
{"name": "Auto-bronzants", "id": 113},
{"name": "Soins des mains", "id": 114},
{"name": "Soins des pieds", "id": 115},
{"name": "Hydratants corps homme", "id": 116},
{"name": "Déodorants corps homme", "id": 117},
{"name": "Shampoings", "id": 118},
{"name": "Après-shampoings", "id": 119},
{"name": "Masques capillaires", "id": 120},
{"name": "Huiles capillaires", "id": 121},
{"name": "Coiffants", "id": 122},
{"name": "Accessoires cheveux", "id": 123},
{"name": "Soins cheveux homme", "id": 124},
{"name": "Produits coiffants homme", "id": 125},
{"name": "Fond de teint", "id": 126},
{"name": "BB/CC crèmes", "id": 127},
{"name": "Poudres", "id": 128},
{"name": "Fards à paupières", "id": 129},
{"name": "Mascaras", "id": 130},
{"name": "Eyeliners", "id": 131},
{"name": "Rouges à lèvres", "id": 132},
{"name": "Gloss", "id": 133},
{"name": "Crayons à sourcils", "id": 134},
{"name": "Accessoires maquillage", "id": 135},
{"name": "Correcteurs teint homme", "id": 136},
{"name": "Poudres matifiantes homme", "id": 137},
{"name": "Parfums", "id": 138},
{"name": "Brumes corporelles", "id": 139},
{"name": "Huiles essentielles", "id": 140},
{"name": "Diffuseurs d'huiles", "id": 141},
{"name": "Bougies parfumées", "id": 142},
{"name": "Déodorants solides", "id": 143},
{"name": "Déodorants sprays", "id": 144},
{"name": "Savons solides", "id": 145},
{"name": "Savons liquides", "id": 146},
{"name": "Produits bain", "id": 147},
{"name": "Hygiène intime", "id": 148},
{"name": "Cups menstruelles", "id": 149},
{"name": "Produits zéro déchet", "id": 150},
{"name": "Brosses nettoyantes visage", "id": 151},
{"name": "Pinces à épiler", "id": 152},
{"name": "Trousse de voyage", "id": 153},
{"name": "Huiles de CBD", "id": 154},
{"name": "Cosmétiques au CBD", "id": 155},
{"name": "Infusions au CBD", "id": 156},
{"name": "Bonbons au CBD", "id": 157},
{"name": "Accessoires CBD", "id": 158},
{"name": "Robes femme", "id": 201},
{"name": "Tops femme", "id": 202},
{"name": "Chemisiers femme", "id": 203},
{"name": "T-shirts femme", "id": 204},
{"name": "Pulls femme", "id": 205},
{"name": "Jeans femme", "id": 206},
{"name": "Pantalons femme", "id": 207},
{"name": "Jupes femme", "id": 208},
{"name": "Shorts femme", "id": 209},
{"name": "Vestes femme", "id": 210},
{"name": "Manteaux femme", "id": 211},
{"name": "Maillots de bain femme", "id": 212},
{"name": "Lingerie femme", "id": 213},
{"name": "Chaussures femme", "id": 214},
{"name": "Sacs femme", "id": 215},
{"name": "Bijoux femme", "id": 216},
{"name": "Chemises homme", "id": 301},
{"name": "T-shirts homme", "id": 302},
{"name": "Polos homme", "id": 303},
{"name": "Pulls homme", "id": 304},
{"name": "Jeans homme", "id": 305},
{"name": "Pantalons homme", "id": 306},
{"name": "Shorts homme", "id": 307},
{"name": "Vestes homme", "id": 308},
{"name": "Manteaux homme", "id": 309},
{"name": "Costumes homme", "id": 310},
{"name": "Maillots de bain homme", "id": 311},
{"name": "Sous-vêtements homme", "id": 312},
{"name": "Chaussures homme", "id": 313},
{"name": "Accessoires homme", "id": 314},
{"name": "Montres homme", "id": 315},
{"name": "Vêtements bébé (0-2 ans)", "id": 401},
{"name": "T-shirts enfant", "id": 402},
{"name": "Pulls enfant", "id": 403},
{"name": "Pantalons enfant", "id": 404},
{"name": "Robes enfant", "id": 405},
{"name": "Jeans enfant", "id": 406},
{"name": "Vestes enfant", "id": 407},
{"name": "Pyjamas enfant", "id": 408},
{"name": "Chaussures enfant", "id": 409},
{"name": "Accessoires enfant", "id": 410},
{"name": "Vêtements de sport enfant", "id": 411},
{"name": "Maillots de bain enfant", "id": 412},
{"name": "Sous-vêtements enfant", "id": 413},
{"name": "Déguisements enfant", "id": 414},
{"name": "Cartables et sacs enfant", "id": 415},
# Chaussures Femme détaillées
{"name": "Sneakers femme", "id": 217},
{"name": "Boots femme", "id": 218},
{"name": "Escarpins femme", "id": 219},
{"name": "Sandales femme", "id": 220},
{"name": "Ballerines femme", "id": 221},
{"name": "Mocassins femme", "id": 222},
{"name": "Bottines femme", "id": 223},
{"name": "Espadrilles femme", "id": 224},
{"name": "Mules femme", "id": 225},
{"name": "Chaussures de sport femme", "id": 226},
{"name": "Bottes hautes femme", "id": 227},
{"name": "Chaussures compensées femme", "id": 228},
# Chaussures Homme détaillées
{"name": "Sneakers homme", "id": 316},
{"name": "Boots homme", "id": 317},
{"name": "Chaussures de ville homme", "id": 318},
{"name": "Mocassins homme", "id": 319},
{"name": "Sandales homme", "id": 320},
{"name": "Chaussures bateau homme", "id": 321},
{"name": "Bottines homme", "id": 322},
{"name": "Chaussures de sport homme", "id": 323},
{"name": "Espadrilles homme", "id": 324},
{"name": "Derbies homme", "id": 325},
{"name": "Richelieus homme", "id": 326},
{"name": "Chaussures de randonnée homme", "id": 327},
# Chaussures Enfant détaillées
{"name": "Sneakers enfant", "id": 416},
{"name": "Bottes enfant", "id": 417},
{"name": "Sandales enfant", "id": 418},
{"name": "Chaussures de sport enfant", "id": 419},
{"name": "Chaussures premiers pas", "id": 420},
{"name": "Chaussures à scratch enfant", "id": 421},
{"name": "Chaussures d'école enfant", "id": 422},
{"name": "Pantoufles enfant", "id": 423},
{"name": "Chaussures de cérémonie enfant", "id": 424},
{"name": "Bottes de pluie enfant", "id": 425}
];
# Extract category names
items = [category["name"] for category in categories]
# Initialize the model and tokenizer
model_name = 'hf-hub:Marqo/marqo-fashionSigLIP'
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(model_name)
tokenizer = open_clip.get_tokenizer(model_name)
# Generate descriptions
def generate_description(item):
return f"A fashion item called {item}"
items_desc = [generate_description(item) for item in items]
text = tokenizer(items_desc)
# Encode text features
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
torch.cuda.empty_cache() # Avant de charger le modèle
with torch.no_grad(), torch.amp.autocast(device_type=device):
text_features = model.encode_text(text.to(device))
text_features /= text_features.norm(dim=-1, keepdim=True)
# Prediction function
def predict(image, url):
if url:
response = requests.get(url)
image = Image.open(BytesIO(response.content))
processed_image = preprocess_val(image).unsqueeze(0).to(device)
with torch.no_grad(), torch.amp.autocast(device_type=device):
image_features = model.encode_image(processed_image)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_probs = (100 * image_features @ text_features.T).softmax(dim=-1)
sorted_confidences = sorted(
{items[i]: float(text_probs[0, i]) for i in range(len(items))}.items(),
key=lambda x: x[1],
reverse=True
)
# Include category IDs in the response
top_10_categories = [
{
"category_name": category["name"],
"id": category["id"],
"confidence": confidence
}
for category_name, confidence in sorted_confidences[:10]
for category in categories if category["name"] == category_name
]
return image, top_10_categories
# Ajout de la fonction de prédiction par lots
def predict_batch(images, urls):
# Combiner les images provenant des URLs et des téléchargements directs
combined_images = []
for image, url in zip(images, urls):
if url:
response = requests.get(url)
image = Image.open(BytesIO(response.content))
combined_images.append(preprocess_val(image).unsqueeze(0).to(device))
# Empiler toutes les images traitées en un seul lot
batch_images = torch.cat(combined_images, dim=0)
with torch.no_grad(), torch.amp.autocast(device_type=device):
image_features = model.encode_image(batch_images)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_probs = (100 * image_features @ text_features.T).softmax(dim=-1)
# Traiter chaque image dans le lot
batch_results = []
for i in range(len(images)):
sorted_confidences = sorted(
{items[j]: float(text_probs[i, j]) for j in range(len(items))}.items(),
key=lambda x: x[1],
reverse=True
)
# Inclure les IDs de catégorie dans la réponse
top_10_categories = [
{
"category_name": category["name"],
"id": category["id"],
"confidence": confidence
}
for category_name, confidence in sorted_confidences[:10]
for category in categories if category["name"] == category_name
]
batch_results.append(top_10_categories)
return batch_results
# Fonction de prédiction avec texte
def predict_with_text(image, url, text_prompt):
if url:
response = requests.get(url)
image = Image.open(BytesIO(response.content))
processed_image = preprocess_val(image).unsqueeze(0).to(device)
# Encoder l'image
with torch.no_grad(), torch.amp.autocast(device_type=device):
image_features = model.encode_image(processed_image)
image_features /= image_features.norm(dim=-1, keepdim=True)
# Encoder le texte fourni par l'utilisateur
user_text = tokenizer([text_prompt]).to(device)
user_text_features = model.encode_text(user_text)
user_text_features /= user_text_features.norm(dim=-1, keepdim=True)
# Combiner les caractéristiques de l'image et du texte (moyenne pondérée)
combined_features = 0.7 * image_features + 0.3 * user_text_features
combined_features /= combined_features.norm(dim=-1, keepdim=True)
# Calculer les probabilités avec les caractéristiques combinées
text_probs = (100 * combined_features @ text_features.T).softmax(dim=-1)
sorted_confidences = sorted(
{items[i]: float(text_probs[0, i]) for i in range(len(items))}.items(),
key=lambda x: x[1],
reverse=True
)
# Inclure les IDs de catégorie dans la réponse
top_10_categories = [
{
"category_name": category["name"],
"id": category["id"],
"confidence": confidence
}
for category_name, confidence in sorted_confidences[:10]
for category in categories if category["name"] == category_name
]
return image, top_10_categories
# Fonction de prédiction combinée qui choisit la méthode appropriée
def predict_combined(image, url, text_prompt=""):
if text_prompt and text_prompt.strip():
return predict_with_text(image, url, text_prompt)
else:
return predict(image, url)
# Clear function
def clear_fields():
return None, "", "", None, ""
# Gradio interface
title = "Fashion Item Classifier with Marqo-FashionSigLIP"
description = "Upload an image or provide a URL of a fashion item to classify it using [Marqo-FashionSigLIP](https://huggingface.co/Marqo/marqo-fashionSigLIP)!"
examples = [
["images/dress.jpg", "Dress"],
["images/sweatpants.jpg", "Sweatpants"],
["images/t-shirt.jpg", "T-Shirt"],
]
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(f"# {title}")
gr.Markdown(description)
gr.Markdown(sidebar_markdown)
with gr.Column(scale=2):
input_image = gr.Image(type="pil", label="Upload Fashion Item Image", height=312)
input_url = gr.Textbox(label="Or provide an image URL")
input_text = gr.Textbox(label="Ajouter une description textuelle (optionnel)", placeholder="Ex: Robe d'été fleurie pour femme")
input_images = gr.Image(type="pil", label="Upload Fashion Item Images", height=312)
input_urls = gr.Textbox(label="Or provide image URLs (comma-separated)", lines=2)
with gr.Row():
predict_button = gr.Button("Classifier")
clear_button = gr.Button("Effacer")
gr.Markdown("Ou cliquez sur l'une des images ci-dessous pour la classifier:")
gr.Examples(examples=examples, inputs=input_image)
output_label = gr.JSON(label="Top Categories")
output_batch_label = gr.JSON(label="Top Categories for Each Image")
predict_button.click(predict_combined, inputs=[input_image, input_url, input_text], outputs=[input_image, output_label])
clear_button.click(clear_fields, outputs=[input_image, input_url, input_text, input_images, input_urls])
# Launch the interface
demo.launch()