Spaces:
Sleeping
Sleeping
import gradio as gr | |
import open_clip | |
import torch | |
import requests | |
import numpy as np | |
from PIL import Image | |
from io import BytesIO | |
# Sidebar content | |
sidebar_markdown = """ | |
Note, this demo can classify 200 items. If you didn't find what you're looking for, reach out to us on our [Community](https://join.slack.com/t/marqo-community/shared_invite/zt-2iab0260n-QJrZLUSOJYUifVxf964Gdw) and request an item to be added. | |
## Documentation | |
📚 [Blog Post](https://www.marqo.ai/blog/search-model-for-fashion) | |
📝 [Use Case Blog Post](https://www.marqo.ai/blog/ecommerce-image-classification-with-marqo-fashionclip) | |
## Code | |
💻 [GitHub Repo](https://github.com/marqo-ai/marqo-FashionCLIP) | |
🤝 [Google Colab](https://colab.research.google.com/drive/1nq978xFJjJcnyrJ2aE5l82GHAXOvTmfd?usp=sharing) | |
🤗 [Hugging Face Collection](https://huggingface.co/collections/Marqo/marqo-fashionclip-and-marqo-fashionsiglip-66b43f2d09a06ad2368d4af6) | |
""" | |
# List of fashion items and their IDs | |
categories = [ | |
{"name": "Nettoyants visage", "id": 101}, | |
{"name": "Exfoliants visage", "id": 102}, | |
{"name": "Hydratants visage", "id": 103}, | |
{"name": "Masques visage", "id": 104}, | |
{"name": "Soins ciblés visage", "id": 105}, | |
{"name": "Protection solaire visage", "id": 106}, | |
{"name": "Nettoyants visage homme", "id": 107}, | |
{"name": "Crèmes hydratantes homme", "id": 108}, | |
{"name": "Soins après-rasage", "id": 109}, | |
{"name": "Hydratants corps", "id": 110}, | |
{"name": "Exfoliants corps", "id": 111}, | |
{"name": "Soins fermeté & minceur", "id": 112}, | |
{"name": "Auto-bronzants", "id": 113}, | |
{"name": "Soins des mains", "id": 114}, | |
{"name": "Soins des pieds", "id": 115}, | |
{"name": "Hydratants corps homme", "id": 116}, | |
{"name": "Déodorants corps homme", "id": 117}, | |
{"name": "Shampoings", "id": 118}, | |
{"name": "Après-shampoings", "id": 119}, | |
{"name": "Masques capillaires", "id": 120}, | |
{"name": "Huiles capillaires", "id": 121}, | |
{"name": "Coiffants", "id": 122}, | |
{"name": "Accessoires cheveux", "id": 123}, | |
{"name": "Soins cheveux homme", "id": 124}, | |
{"name": "Produits coiffants homme", "id": 125}, | |
{"name": "Fond de teint", "id": 126}, | |
{"name": "BB/CC crèmes", "id": 127}, | |
{"name": "Poudres", "id": 128}, | |
{"name": "Fards à paupières", "id": 129}, | |
{"name": "Mascaras", "id": 130}, | |
{"name": "Eyeliners", "id": 131}, | |
{"name": "Rouges à lèvres", "id": 132}, | |
{"name": "Gloss", "id": 133}, | |
{"name": "Crayons à sourcils", "id": 134}, | |
{"name": "Accessoires maquillage", "id": 135}, | |
{"name": "Correcteurs teint homme", "id": 136}, | |
{"name": "Poudres matifiantes homme", "id": 137}, | |
{"name": "Parfums", "id": 138}, | |
{"name": "Brumes corporelles", "id": 139}, | |
{"name": "Huiles essentielles", "id": 140}, | |
{"name": "Diffuseurs d'huiles", "id": 141}, | |
{"name": "Bougies parfumées", "id": 142}, | |
{"name": "Déodorants solides", "id": 143}, | |
{"name": "Déodorants sprays", "id": 144}, | |
{"name": "Savons solides", "id": 145}, | |
{"name": "Savons liquides", "id": 146}, | |
{"name": "Produits bain", "id": 147}, | |
{"name": "Hygiène intime", "id": 148}, | |
{"name": "Cups menstruelles", "id": 149}, | |
{"name": "Produits zéro déchet", "id": 150}, | |
{"name": "Brosses nettoyantes visage", "id": 151}, | |
{"name": "Pinces à épiler", "id": 152}, | |
{"name": "Trousse de voyage", "id": 153}, | |
{"name": "Huiles de CBD", "id": 154}, | |
{"name": "Cosmétiques au CBD", "id": 155}, | |
{"name": "Infusions au CBD", "id": 156}, | |
{"name": "Bonbons au CBD", "id": 157}, | |
{"name": "Accessoires CBD", "id": 158}, | |
{"name": "Robes femme", "id": 201}, | |
{"name": "Tops femme", "id": 202}, | |
{"name": "Chemisiers femme", "id": 203}, | |
{"name": "T-shirts femme", "id": 204}, | |
{"name": "Pulls femme", "id": 205}, | |
{"name": "Jeans femme", "id": 206}, | |
{"name": "Pantalons femme", "id": 207}, | |
{"name": "Jupes femme", "id": 208}, | |
{"name": "Shorts femme", "id": 209}, | |
{"name": "Vestes femme", "id": 210}, | |
{"name": "Manteaux femme", "id": 211}, | |
{"name": "Maillots de bain femme", "id": 212}, | |
{"name": "Lingerie femme", "id": 213}, | |
{"name": "Chaussures femme", "id": 214}, | |
{"name": "Sacs femme", "id": 215}, | |
{"name": "Bijoux femme", "id": 216}, | |
{"name": "Chemises homme", "id": 301}, | |
{"name": "T-shirts homme", "id": 302}, | |
{"name": "Polos homme", "id": 303}, | |
{"name": "Pulls homme", "id": 304}, | |
{"name": "Jeans homme", "id": 305}, | |
{"name": "Pantalons homme", "id": 306}, | |
{"name": "Shorts homme", "id": 307}, | |
{"name": "Vestes homme", "id": 308}, | |
{"name": "Manteaux homme", "id": 309}, | |
{"name": "Costumes homme", "id": 310}, | |
{"name": "Maillots de bain homme", "id": 311}, | |
{"name": "Sous-vêtements homme", "id": 312}, | |
{"name": "Chaussures homme", "id": 313}, | |
{"name": "Accessoires homme", "id": 314}, | |
{"name": "Montres homme", "id": 315}, | |
{"name": "Vêtements bébé (0-2 ans)", "id": 401}, | |
{"name": "T-shirts enfant", "id": 402}, | |
{"name": "Pulls enfant", "id": 403}, | |
{"name": "Pantalons enfant", "id": 404}, | |
{"name": "Robes enfant", "id": 405}, | |
{"name": "Jeans enfant", "id": 406}, | |
{"name": "Vestes enfant", "id": 407}, | |
{"name": "Pyjamas enfant", "id": 408}, | |
{"name": "Chaussures enfant", "id": 409}, | |
{"name": "Accessoires enfant", "id": 410}, | |
{"name": "Vêtements de sport enfant", "id": 411}, | |
{"name": "Maillots de bain enfant", "id": 412}, | |
{"name": "Sous-vêtements enfant", "id": 413}, | |
{"name": "Déguisements enfant", "id": 414}, | |
{"name": "Cartables et sacs enfant", "id": 415}, | |
# Chaussures Femme détaillées | |
{"name": "Sneakers femme", "id": 217}, | |
{"name": "Boots femme", "id": 218}, | |
{"name": "Escarpins femme", "id": 219}, | |
{"name": "Sandales femme", "id": 220}, | |
{"name": "Ballerines femme", "id": 221}, | |
{"name": "Mocassins femme", "id": 222}, | |
{"name": "Bottines femme", "id": 223}, | |
{"name": "Espadrilles femme", "id": 224}, | |
{"name": "Mules femme", "id": 225}, | |
{"name": "Chaussures de sport femme", "id": 226}, | |
{"name": "Bottes hautes femme", "id": 227}, | |
{"name": "Chaussures compensées femme", "id": 228}, | |
# Chaussures Homme détaillées | |
{"name": "Sneakers homme", "id": 316}, | |
{"name": "Boots homme", "id": 317}, | |
{"name": "Chaussures de ville homme", "id": 318}, | |
{"name": "Mocassins homme", "id": 319}, | |
{"name": "Sandales homme", "id": 320}, | |
{"name": "Chaussures bateau homme", "id": 321}, | |
{"name": "Bottines homme", "id": 322}, | |
{"name": "Chaussures de sport homme", "id": 323}, | |
{"name": "Espadrilles homme", "id": 324}, | |
{"name": "Derbies homme", "id": 325}, | |
{"name": "Richelieus homme", "id": 326}, | |
{"name": "Chaussures de randonnée homme", "id": 327}, | |
# Chaussures Enfant détaillées | |
{"name": "Sneakers enfant", "id": 416}, | |
{"name": "Bottes enfant", "id": 417}, | |
{"name": "Sandales enfant", "id": 418}, | |
{"name": "Chaussures de sport enfant", "id": 419}, | |
{"name": "Chaussures premiers pas", "id": 420}, | |
{"name": "Chaussures à scratch enfant", "id": 421}, | |
{"name": "Chaussures d'école enfant", "id": 422}, | |
{"name": "Pantoufles enfant", "id": 423}, | |
{"name": "Chaussures de cérémonie enfant", "id": 424}, | |
{"name": "Bottes de pluie enfant", "id": 425} | |
]; | |
# Extract category names | |
items = [category["name"] for category in categories] | |
# Initialize the model and tokenizer | |
model_name = 'hf-hub:Marqo/marqo-fashionSigLIP' | |
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(model_name) | |
tokenizer = open_clip.get_tokenizer(model_name) | |
# Generate descriptions | |
def generate_description(item): | |
return f"A fashion item called {item}" | |
items_desc = [generate_description(item) for item in items] | |
text = tokenizer(items_desc) | |
# Encode text features | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model.to(device) | |
torch.cuda.empty_cache() # Avant de charger le modèle | |
with torch.no_grad(), torch.amp.autocast(device_type=device): | |
text_features = model.encode_text(text.to(device)) | |
text_features /= text_features.norm(dim=-1, keepdim=True) | |
# Prediction function | |
def predict(image, url): | |
if url: | |
response = requests.get(url) | |
image = Image.open(BytesIO(response.content)) | |
processed_image = preprocess_val(image).unsqueeze(0).to(device) | |
with torch.no_grad(), torch.amp.autocast(device_type=device): | |
image_features = model.encode_image(processed_image) | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
text_probs = (100 * image_features @ text_features.T).softmax(dim=-1) | |
sorted_confidences = sorted( | |
{items[i]: float(text_probs[0, i]) for i in range(len(items))}.items(), | |
key=lambda x: x[1], | |
reverse=True | |
) | |
# Include category IDs in the response | |
top_10_categories = [ | |
{ | |
"category_name": category["name"], | |
"id": category["id"], | |
"confidence": confidence | |
} | |
for category_name, confidence in sorted_confidences[:10] | |
for category in categories if category["name"] == category_name | |
] | |
return image, top_10_categories | |
# Ajout de la fonction de prédiction par lots | |
def predict_batch(images, urls): | |
# Combiner les images provenant des URLs et des téléchargements directs | |
combined_images = [] | |
for image, url in zip(images, urls): | |
if url: | |
response = requests.get(url) | |
image = Image.open(BytesIO(response.content)) | |
combined_images.append(preprocess_val(image).unsqueeze(0).to(device)) | |
# Empiler toutes les images traitées en un seul lot | |
batch_images = torch.cat(combined_images, dim=0) | |
with torch.no_grad(), torch.amp.autocast(device_type=device): | |
image_features = model.encode_image(batch_images) | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
text_probs = (100 * image_features @ text_features.T).softmax(dim=-1) | |
# Traiter chaque image dans le lot | |
batch_results = [] | |
for i in range(len(images)): | |
sorted_confidences = sorted( | |
{items[j]: float(text_probs[i, j]) for j in range(len(items))}.items(), | |
key=lambda x: x[1], | |
reverse=True | |
) | |
# Inclure les IDs de catégorie dans la réponse | |
top_10_categories = [ | |
{ | |
"category_name": category["name"], | |
"id": category["id"], | |
"confidence": confidence | |
} | |
for category_name, confidence in sorted_confidences[:10] | |
for category in categories if category["name"] == category_name | |
] | |
batch_results.append(top_10_categories) | |
return batch_results | |
# Fonction de prédiction avec texte | |
def predict_with_text(image, url, text_prompt): | |
if url: | |
response = requests.get(url) | |
image = Image.open(BytesIO(response.content)) | |
processed_image = preprocess_val(image).unsqueeze(0).to(device) | |
# Encoder l'image | |
with torch.no_grad(), torch.amp.autocast(device_type=device): | |
image_features = model.encode_image(processed_image) | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
# Encoder le texte fourni par l'utilisateur | |
user_text = tokenizer([text_prompt]).to(device) | |
user_text_features = model.encode_text(user_text) | |
user_text_features /= user_text_features.norm(dim=-1, keepdim=True) | |
# Combiner les caractéristiques de l'image et du texte (moyenne pondérée) | |
combined_features = 0.7 * image_features + 0.3 * user_text_features | |
combined_features /= combined_features.norm(dim=-1, keepdim=True) | |
# Calculer les probabilités avec les caractéristiques combinées | |
text_probs = (100 * combined_features @ text_features.T).softmax(dim=-1) | |
sorted_confidences = sorted( | |
{items[i]: float(text_probs[0, i]) for i in range(len(items))}.items(), | |
key=lambda x: x[1], | |
reverse=True | |
) | |
# Inclure les IDs de catégorie dans la réponse | |
top_10_categories = [ | |
{ | |
"category_name": category["name"], | |
"id": category["id"], | |
"confidence": confidence | |
} | |
for category_name, confidence in sorted_confidences[:10] | |
for category in categories if category["name"] == category_name | |
] | |
return image, top_10_categories | |
# Fonction de prédiction combinée qui choisit la méthode appropriée | |
def predict_combined(image, url, text_prompt=""): | |
if text_prompt and text_prompt.strip(): | |
return predict_with_text(image, url, text_prompt) | |
else: | |
return predict(image, url) | |
# Clear function | |
def clear_fields(): | |
return None, "", "", None, "" | |
# Gradio interface | |
title = "Fashion Item Classifier with Marqo-FashionSigLIP" | |
description = "Upload an image or provide a URL of a fashion item to classify it using [Marqo-FashionSigLIP](https://huggingface.co/Marqo/marqo-fashionSigLIP)!" | |
examples = [ | |
["images/dress.jpg", "Dress"], | |
["images/sweatpants.jpg", "Sweatpants"], | |
["images/t-shirt.jpg", "T-Shirt"], | |
] | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown(f"# {title}") | |
gr.Markdown(description) | |
gr.Markdown(sidebar_markdown) | |
with gr.Column(scale=2): | |
input_image = gr.Image(type="pil", label="Upload Fashion Item Image", height=312) | |
input_url = gr.Textbox(label="Or provide an image URL") | |
input_text = gr.Textbox(label="Ajouter une description textuelle (optionnel)", placeholder="Ex: Robe d'été fleurie pour femme") | |
input_images = gr.Image(type="pil", label="Upload Fashion Item Images", height=312) | |
input_urls = gr.Textbox(label="Or provide image URLs (comma-separated)", lines=2) | |
with gr.Row(): | |
predict_button = gr.Button("Classifier") | |
clear_button = gr.Button("Effacer") | |
gr.Markdown("Ou cliquez sur l'une des images ci-dessous pour la classifier:") | |
gr.Examples(examples=examples, inputs=input_image) | |
output_label = gr.JSON(label="Top Categories") | |
output_batch_label = gr.JSON(label="Top Categories for Each Image") | |
predict_button.click(predict_combined, inputs=[input_image, input_url, input_text], outputs=[input_image, output_label]) | |
clear_button.click(clear_fields, outputs=[input_image, input_url, input_text, input_images, input_urls]) | |
# Launch the interface | |
demo.launch() | |