File size: 15,030 Bytes
792840c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c4aa87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
792840c
 
1c4aa87
 
792840c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c4aa87
 
 
792840c
1c4aa87
 
 
792840c
 
1c4aa87
 
 
792840c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import gradio as gr
import open_clip
import torch
import requests
import numpy as np
from PIL import Image
from io import BytesIO

# Sidebar content
sidebar_markdown = """
Note, this demo can classify 200 items. If you didn't find what you're looking for, reach out to us on our [Community](https://join.slack.com/t/marqo-community/shared_invite/zt-2iab0260n-QJrZLUSOJYUifVxf964Gdw) and request an item to be added.

## Documentation
📚 [Blog Post](https://www.marqo.ai/blog/search-model-for-fashion)

📝 [Use Case Blog Post](https://www.marqo.ai/blog/ecommerce-image-classification-with-marqo-fashionclip)

## Code
💻 [GitHub Repo](https://github.com/marqo-ai/marqo-FashionCLIP)

🤝 [Google Colab](https://colab.research.google.com/drive/1nq978xFJjJcnyrJ2aE5l82GHAXOvTmfd?usp=sharing)

🤗 [Hugging Face Collection](https://huggingface.co/collections/Marqo/marqo-fashionclip-and-marqo-fashionsiglip-66b43f2d09a06ad2368d4af6)
"""

# List of fashion items and their IDs
categories = [
    {"name": "Nettoyants visage", "id": 101},
    {"name": "Exfoliants visage", "id": 102},
    {"name": "Hydratants visage", "id": 103},
    {"name": "Masques visage", "id": 104},
    {"name": "Soins ciblés visage", "id": 105},
    {"name": "Protection solaire visage", "id": 106},
    {"name": "Nettoyants visage homme", "id": 107},
    {"name": "Crèmes hydratantes homme", "id": 108},
    {"name": "Soins après-rasage", "id": 109},
    {"name": "Hydratants corps", "id": 110},
    {"name": "Exfoliants corps", "id": 111},
    {"name": "Soins fermeté & minceur", "id": 112},
    {"name": "Auto-bronzants", "id": 113},
    {"name": "Soins des mains", "id": 114},
    {"name": "Soins des pieds", "id": 115},
    {"name": "Hydratants corps homme", "id": 116},
    {"name": "Déodorants corps homme", "id": 117},
    {"name": "Shampoings", "id": 118},
    {"name": "Après-shampoings", "id": 119},
    {"name": "Masques capillaires", "id": 120},
    {"name": "Huiles capillaires", "id": 121},
    {"name": "Coiffants", "id": 122},
    {"name": "Accessoires cheveux", "id": 123},
    {"name": "Soins cheveux homme", "id": 124},
    {"name": "Produits coiffants homme", "id": 125},
    {"name": "Fond de teint", "id": 126},
    {"name": "BB/CC crèmes", "id": 127},
    {"name": "Poudres", "id": 128},
    {"name": "Fards à paupières", "id": 129},
    {"name": "Mascaras", "id": 130},
    {"name": "Eyeliners", "id": 131},
    {"name": "Rouges à lèvres", "id": 132},
    {"name": "Gloss", "id": 133},
    {"name": "Crayons à sourcils", "id": 134},
    {"name": "Accessoires maquillage", "id": 135},
    {"name": "Correcteurs teint homme", "id": 136},
    {"name": "Poudres matifiantes homme", "id": 137},
    {"name": "Parfums", "id": 138},
    {"name": "Brumes corporelles", "id": 139},
    {"name": "Huiles essentielles", "id": 140},
    {"name": "Diffuseurs d'huiles", "id": 141},
    {"name": "Bougies parfumées", "id": 142},
    {"name": "Déodorants solides", "id": 143},
    {"name": "Déodorants sprays", "id": 144},
    {"name": "Savons solides", "id": 145},
    {"name": "Savons liquides", "id": 146},
    {"name": "Produits bain", "id": 147},
    {"name": "Hygiène intime", "id": 148},
    {"name": "Cups menstruelles", "id": 149},
    {"name": "Produits zéro déchet", "id": 150},
    {"name": "Brosses nettoyantes visage", "id": 151},
    {"name": "Pinces à épiler", "id": 152},
    {"name": "Trousse de voyage", "id": 153},
    {"name": "Huiles de CBD", "id": 154},
    {"name": "Cosmétiques au CBD", "id": 155},
    {"name": "Infusions au CBD", "id": 156},
    {"name": "Bonbons au CBD", "id": 157},
    {"name": "Accessoires CBD", "id": 158},
    {"name": "Robes femme", "id": 201},
    {"name": "Tops femme", "id": 202},
    {"name": "Chemisiers femme", "id": 203},
    {"name": "T-shirts femme", "id": 204},
    {"name": "Pulls femme", "id": 205},
    {"name": "Jeans femme", "id": 206},
    {"name": "Pantalons femme", "id": 207},
    {"name": "Jupes femme", "id": 208},
    {"name": "Shorts femme", "id": 209},
    {"name": "Vestes femme", "id": 210},
    {"name": "Manteaux femme", "id": 211},
    {"name": "Maillots de bain femme", "id": 212},
    {"name": "Lingerie femme", "id": 213},
    {"name": "Chaussures femme", "id": 214},
    {"name": "Sacs femme", "id": 215},
    {"name": "Bijoux femme", "id": 216},
    {"name": "Chemises homme", "id": 301},
    {"name": "T-shirts homme", "id": 302},
    {"name": "Polos homme", "id": 303},
    {"name": "Pulls homme", "id": 304},
    {"name": "Jeans homme", "id": 305},
    {"name": "Pantalons homme", "id": 306},
    {"name": "Shorts homme", "id": 307},
    {"name": "Vestes homme", "id": 308},
    {"name": "Manteaux homme", "id": 309},
    {"name": "Costumes homme", "id": 310},
    {"name": "Maillots de bain homme", "id": 311},
    {"name": "Sous-vêtements homme", "id": 312},
    {"name": "Chaussures homme", "id": 313},
    {"name": "Accessoires homme", "id": 314},
    {"name": "Montres homme", "id": 315},
    {"name": "Vêtements bébé (0-2 ans)", "id": 401},
    {"name": "T-shirts enfant", "id": 402},
    {"name": "Pulls enfant", "id": 403},
    {"name": "Pantalons enfant", "id": 404},
    {"name": "Robes enfant", "id": 405},
    {"name": "Jeans enfant", "id": 406},
    {"name": "Vestes enfant", "id": 407},
    {"name": "Pyjamas enfant", "id": 408},
    {"name": "Chaussures enfant", "id": 409},
    {"name": "Accessoires enfant", "id": 410},
    {"name": "Vêtements de sport enfant", "id": 411},
    {"name": "Maillots de bain enfant", "id": 412},
    {"name": "Sous-vêtements enfant", "id": 413},
    {"name": "Déguisements enfant", "id": 414},
    {"name": "Cartables et sacs enfant", "id": 415},
    # Chaussures Femme détaillées
    {"name": "Sneakers femme", "id": 217},
    {"name": "Boots femme", "id": 218},
    {"name": "Escarpins femme", "id": 219},
    {"name": "Sandales femme", "id": 220},
    {"name": "Ballerines femme", "id": 221},
    {"name": "Mocassins femme", "id": 222},
    {"name": "Bottines femme", "id": 223},
    {"name": "Espadrilles femme", "id": 224},
    {"name": "Mules femme", "id": 225},
    {"name": "Chaussures de sport femme", "id": 226},
    {"name": "Bottes hautes femme", "id": 227},
    {"name": "Chaussures compensées femme", "id": 228},
    # Chaussures Homme détaillées
    {"name": "Sneakers homme", "id": 316},
    {"name": "Boots homme", "id": 317},
    {"name": "Chaussures de ville homme", "id": 318},
    {"name": "Mocassins homme", "id": 319},
    {"name": "Sandales homme", "id": 320},
    {"name": "Chaussures bateau homme", "id": 321},
    {"name": "Bottines homme", "id": 322},
    {"name": "Chaussures de sport homme", "id": 323},
    {"name": "Espadrilles homme", "id": 324},
    {"name": "Derbies homme", "id": 325},
    {"name": "Richelieus homme", "id": 326},
    {"name": "Chaussures de randonnée homme", "id": 327},
    # Chaussures Enfant détaillées
    {"name": "Sneakers enfant", "id": 416},
    {"name": "Bottes enfant", "id": 417},
    {"name": "Sandales enfant", "id": 418},
    {"name": "Chaussures de sport enfant", "id": 419},
    {"name": "Chaussures premiers pas", "id": 420},
    {"name": "Chaussures à scratch enfant", "id": 421},
    {"name": "Chaussures d'école enfant", "id": 422},
    {"name": "Pantoufles enfant", "id": 423},
    {"name": "Chaussures de cérémonie enfant", "id": 424},
    {"name": "Bottes de pluie enfant", "id": 425}
];


# Extract category names
items = [category["name"] for category in categories]

# Initialize the model and tokenizer
model_name = 'hf-hub:Marqo/marqo-fashionSigLIP'
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(model_name)
tokenizer = open_clip.get_tokenizer(model_name)

# Generate descriptions
def generate_description(item):
    return f"A fashion item called {item}"

items_desc = [generate_description(item) for item in items]
text = tokenizer(items_desc)

# Encode text features
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)

torch.cuda.empty_cache()  # Avant de charger le modèle

with torch.no_grad(), torch.amp.autocast(device_type=device):
    text_features = model.encode_text(text.to(device))
    text_features /= text_features.norm(dim=-1, keepdim=True)

# Prediction function
def predict(image, url):
    if url:
        response = requests.get(url)
        image = Image.open(BytesIO(response.content))
    
    processed_image = preprocess_val(image).unsqueeze(0).to(device)

    with torch.no_grad(), torch.amp.autocast(device_type=device):
        image_features = model.encode_image(processed_image)
        image_features /= image_features.norm(dim=-1, keepdim=True)

        text_probs = (100 * image_features @ text_features.T).softmax(dim=-1)
        
        sorted_confidences = sorted(
            {items[i]: float(text_probs[0, i]) for i in range(len(items))}.items(), 
            key=lambda x: x[1], 
            reverse=True
        )
        
        # Include category IDs in the response
        top_10_categories = [
            {
                "category_name": category["name"],
                "id": category["id"],
                "confidence": confidence
            }
            for category_name, confidence in sorted_confidences[:10]
            for category in categories if category["name"] == category_name
        ]
        
    return image, top_10_categories

# Ajout de la fonction de prédiction par lots
def predict_batch(images, urls):
    # Combiner les images provenant des URLs et des téléchargements directs
    combined_images = []
    for image, url in zip(images, urls):
        if url:
            response = requests.get(url)
            image = Image.open(BytesIO(response.content))
        combined_images.append(preprocess_val(image).unsqueeze(0).to(device))
    
    # Empiler toutes les images traitées en un seul lot
    batch_images = torch.cat(combined_images, dim=0)

    with torch.no_grad(), torch.amp.autocast(device_type=device):
        image_features = model.encode_image(batch_images)
        image_features /= image_features.norm(dim=-1, keepdim=True)

        text_probs = (100 * image_features @ text_features.T).softmax(dim=-1)
        
        # Traiter chaque image dans le lot
        batch_results = []
        for i in range(len(images)):
            sorted_confidences = sorted(
                {items[j]: float(text_probs[i, j]) for j in range(len(items))}.items(), 
                key=lambda x: x[1], 
                reverse=True
            )
            
            # Inclure les IDs de catégorie dans la réponse
            top_10_categories = [
                {
                    "category_name": category["name"],
                    "id": category["id"],
                    "confidence": confidence
                }
                for category_name, confidence in sorted_confidences[:10]
                for category in categories if category["name"] == category_name
            ]
            batch_results.append(top_10_categories)
        
    return batch_results

# Fonction de prédiction avec texte
def predict_with_text(image, url, text_prompt):
    if url:
        response = requests.get(url)
        image = Image.open(BytesIO(response.content))
    
    processed_image = preprocess_val(image).unsqueeze(0).to(device)
    
    # Encoder l'image
    with torch.no_grad(), torch.amp.autocast(device_type=device):
        image_features = model.encode_image(processed_image)
        image_features /= image_features.norm(dim=-1, keepdim=True)
        
        # Encoder le texte fourni par l'utilisateur
        user_text = tokenizer([text_prompt]).to(device)
        user_text_features = model.encode_text(user_text)
        user_text_features /= user_text_features.norm(dim=-1, keepdim=True)
        
        # Combiner les caractéristiques de l'image et du texte (moyenne pondérée)
        combined_features = 0.7 * image_features + 0.3 * user_text_features
        combined_features /= combined_features.norm(dim=-1, keepdim=True)
        
        # Calculer les probabilités avec les caractéristiques combinées
        text_probs = (100 * combined_features @ text_features.T).softmax(dim=-1)
        
        sorted_confidences = sorted(
            {items[i]: float(text_probs[0, i]) for i in range(len(items))}.items(), 
            key=lambda x: x[1], 
            reverse=True
        )
        
        # Inclure les IDs de catégorie dans la réponse
        top_10_categories = [
            {
                "category_name": category["name"],
                "id": category["id"],
                "confidence": confidence
            }
            for category_name, confidence in sorted_confidences[:10]
            for category in categories if category["name"] == category_name
        ]
        
    return image, top_10_categories

# Fonction de prédiction combinée qui choisit la méthode appropriée
def predict_combined(image, url, text_prompt=""):
    if text_prompt and text_prompt.strip():
        return predict_with_text(image, url, text_prompt)
    else:
        return predict(image, url)

# Clear function
def clear_fields():
    return None, "", "", None, ""

# Gradio interface
title = "Fashion Item Classifier with Marqo-FashionSigLIP"
description = "Upload an image or provide a URL of a fashion item to classify it using [Marqo-FashionSigLIP](https://huggingface.co/Marqo/marqo-fashionSigLIP)!"

examples = [
    ["images/dress.jpg", "Dress"],
    ["images/sweatpants.jpg", "Sweatpants"],
    ["images/t-shirt.jpg", "T-Shirt"],
]

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown(f"# {title}")
            gr.Markdown(description)
            gr.Markdown(sidebar_markdown)
        with gr.Column(scale=2):
            input_image = gr.Image(type="pil", label="Upload Fashion Item Image", height=312)
            input_url = gr.Textbox(label="Or provide an image URL")
            input_text = gr.Textbox(label="Ajouter une description textuelle (optionnel)", placeholder="Ex: Robe d'été fleurie pour femme")
            input_images = gr.Image(type="pil", label="Upload Fashion Item Images", height=312)
            input_urls = gr.Textbox(label="Or provide image URLs (comma-separated)", lines=2)
            with gr.Row():
                predict_button = gr.Button("Classifier")
                clear_button = gr.Button("Effacer")
            gr.Markdown("Ou cliquez sur l'une des images ci-dessous pour la classifier:")
            gr.Examples(examples=examples, inputs=input_image)
            output_label = gr.JSON(label="Top Categories")
            output_batch_label = gr.JSON(label="Top Categories for Each Image")
            predict_button.click(predict_combined, inputs=[input_image, input_url, input_text], outputs=[input_image, output_label])
            clear_button.click(clear_fields, outputs=[input_image, input_url, input_text, input_images, input_urls])
        
# Launch the interface
demo.launch()