Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,53 +5,103 @@ import gradio as gr
|
|
| 5 |
from zonos.model import Zonos
|
| 6 |
from zonos.conditioning import make_cond_dict
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
|
| 11 |
-
def
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
return None
|
| 14 |
-
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
cond_dict = make_cond_dict(
|
| 28 |
-
text=text,
|
| 29 |
-
speaker=spk_embedding
|
| 30 |
-
language="en-us",
|
|
|
|
| 31 |
)
|
| 32 |
conditioning = model.prepare_conditioning(cond_dict)
|
| 33 |
-
|
| 34 |
-
# Generate codes
|
| 35 |
with torch.no_grad():
|
| 36 |
-
|
|
|
|
| 37 |
codes = model.generate(conditioning)
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
return (
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
gr.
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
if __name__ == "__main__":
|
| 57 |
-
|
|
|
|
|
|
| 5 |
from zonos.model import Zonos
|
| 6 |
from zonos.conditioning import make_cond_dict
|
| 7 |
|
| 8 |
+
# Global cache to hold the loaded model
|
| 9 |
+
MODEL = None
|
| 10 |
|
| 11 |
+
def load_model():
|
| 12 |
+
"""
|
| 13 |
+
Loads the Zonos model once and caches it globally.
|
| 14 |
+
Adjust the model name to the one you want to use.
|
| 15 |
+
"""
|
| 16 |
+
global MODEL
|
| 17 |
+
if MODEL is None:
|
| 18 |
+
model_name = "Zyphra/Zonos-v0.1-hybrid"
|
| 19 |
+
print(f"Loading model: {model_name}")
|
| 20 |
+
MODEL = Zonos.from_pretrained(model_name, device="cuda")
|
| 21 |
+
MODEL = MODEL.requires_grad_(False).eval()
|
| 22 |
+
MODEL.bfloat16() # optional, if your GPU supports bfloat16
|
| 23 |
+
print("Model loaded successfully!")
|
| 24 |
+
return MODEL
|
| 25 |
+
|
| 26 |
+
def tts(text, speaker_audio):
|
| 27 |
+
"""
|
| 28 |
+
text: str
|
| 29 |
+
speaker_audio: (sample_rate, numpy_array) from Gradio if type="numpy"
|
| 30 |
+
Returns (sample_rate, waveform) for Gradio audio output.
|
| 31 |
+
"""
|
| 32 |
+
model = load_model()
|
| 33 |
+
|
| 34 |
+
if not text:
|
| 35 |
return None
|
| 36 |
+
|
| 37 |
+
# If the user hasn't provided any audio, just return None or a placeholder
|
| 38 |
+
if speaker_audio is None:
|
| 39 |
+
return None
|
| 40 |
+
|
| 41 |
+
# Gradio provides audio in the format (sample_rate, numpy_array)
|
| 42 |
+
sr, wav_np = speaker_audio
|
| 43 |
+
|
| 44 |
+
# Convert to Torch tensor: shape (1, num_samples)
|
| 45 |
+
wav_tensor = torch.from_numpy(wav_np).unsqueeze(0).float()
|
| 46 |
+
if wav_tensor.dim() == 2 and wav_tensor.shape[0] > wav_tensor.shape[1]:
|
| 47 |
+
# If shape is transposed, fix it
|
| 48 |
+
wav_tensor = wav_tensor.T
|
| 49 |
+
|
| 50 |
+
# Get speaker embedding
|
| 51 |
+
with torch.no_grad():
|
| 52 |
+
spk_embedding = model.make_speaker_embedding(wav_tensor, sr)
|
| 53 |
+
spk_embedding = spk_embedding.to(model.device, dtype=torch.bfloat16)
|
| 54 |
+
|
| 55 |
+
# Prepare conditioning dictionary
|
| 56 |
cond_dict = make_cond_dict(
|
| 57 |
+
text=text, # The text prompt
|
| 58 |
+
speaker=spk_embedding, # Speaker embedding from reference audio
|
| 59 |
+
language="en-us", # Hard-coded language or switch to another if needed
|
| 60 |
+
device=model.device,
|
| 61 |
)
|
| 62 |
conditioning = model.prepare_conditioning(cond_dict)
|
| 63 |
+
|
| 64 |
+
# Generate codes
|
| 65 |
with torch.no_grad():
|
| 66 |
+
# Optionally set a manual seed for reproducibility
|
| 67 |
+
# torch.manual_seed(1234)
|
| 68 |
codes = model.generate(conditioning)
|
| 69 |
+
|
| 70 |
+
# Decode the codes into raw audio
|
| 71 |
+
wav_out = model.autoencoder.decode(codes).cpu().detach().squeeze()
|
| 72 |
+
sr_out = model.autoencoder.sampling_rate
|
| 73 |
+
|
| 74 |
+
return (sr_out, wav_out.numpy())
|
| 75 |
+
|
| 76 |
+
def build_demo():
|
| 77 |
+
with gr.Blocks() as demo:
|
| 78 |
+
gr.Markdown("# Simple Zonos TTS Demo (Text + Reference Audio)")
|
| 79 |
+
|
| 80 |
+
with gr.Row():
|
| 81 |
+
text_input = gr.Textbox(
|
| 82 |
+
label="Text Prompt",
|
| 83 |
+
value="Hello from Zonos!",
|
| 84 |
+
lines=3
|
| 85 |
+
)
|
| 86 |
+
ref_audio_input = gr.Audio(
|
| 87 |
+
label="Reference Audio (Speaker Cloning)",
|
| 88 |
+
type="numpy"
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
generate_button = gr.Button("Generate")
|
| 92 |
+
|
| 93 |
+
# The output will be an audio widget that Gradio will play
|
| 94 |
+
audio_output = gr.Audio(label="Synthesized Output", type="numpy")
|
| 95 |
+
|
| 96 |
+
# Bind the generate button
|
| 97 |
+
generate_button.click(
|
| 98 |
+
fn=tts,
|
| 99 |
+
inputs=[text_input, ref_audio_input],
|
| 100 |
+
outputs=audio_output,
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
return demo
|
| 104 |
|
| 105 |
if __name__ == "__main__":
|
| 106 |
+
demo_app = build_demo()
|
| 107 |
+
demo_app.launch(server_name="0.0.0.0", server_port=7860, share=True)
|