Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,29 +5,21 @@ import gradio as gr
|
|
5 |
from zonos.model import Zonos
|
6 |
from zonos.conditioning import make_cond_dict
|
7 |
|
8 |
-
# Load the hybrid model
|
9 |
model = Zonos.from_pretrained("Zyphra/Zonos-v0.1-hybrid", device="cuda")
|
10 |
-
model.bfloat16()
|
11 |
|
12 |
-
# Main inference function for Gradio
|
13 |
def tts(text, reference_audio):
|
14 |
-
"""
|
15 |
-
text: str
|
16 |
-
reference_audio: (numpy.ndarray, int) -> (data, sample_rate)
|
17 |
-
"""
|
18 |
if reference_audio is None:
|
19 |
-
return
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
wav_np, sr = reference_audio
|
24 |
|
25 |
-
# Convert NumPy audio to Torch tensor
|
26 |
-
wav_torch = torch.from_numpy(wav_np).float().unsqueeze(0)
|
27 |
if wav_torch.dim() == 2 and wav_torch.shape[0] > wav_torch.shape[1]:
|
28 |
-
# If the shape is (samples, 1), reorder to (1, samples)
|
29 |
wav_torch = wav_torch.T
|
30 |
-
|
31 |
# Create speaker embedding
|
32 |
spk_embedding = model.embed_spk_audio(wav_torch, sr)
|
33 |
|
@@ -39,35 +31,26 @@ def tts(text, reference_audio):
|
|
39 |
)
|
40 |
conditioning = model.prepare_conditioning(cond_dict)
|
41 |
|
42 |
-
# Generate codes
|
43 |
with torch.no_grad():
|
44 |
-
torch.manual_seed(421)
|
45 |
codes = model.generate(conditioning)
|
46 |
|
47 |
-
# Decode the codes into waveform
|
48 |
wavs = model.autoencoder.decode(codes).cpu()
|
49 |
-
out_audio = wavs[0].numpy()
|
50 |
-
|
51 |
-
# Return
|
52 |
return (model.autoencoder.sampling_rate, out_audio)
|
53 |
|
54 |
-
|
55 |
-
# Define the Gradio interface
|
56 |
-
# - text input for the prompt
|
57 |
-
# - audio input for the speaker reference
|
58 |
-
# - audio output with the generated speech
|
59 |
demo = gr.Interface(
|
60 |
fn=tts,
|
61 |
inputs=[
|
62 |
gr.Textbox(label="Text to Synthesize"),
|
63 |
-
gr.Audio(label="Reference Audio (
|
64 |
],
|
65 |
outputs=gr.Audio(label="Generated Audio"),
|
66 |
title="Zonos TTS Demo (Hybrid)",
|
67 |
-
description=
|
68 |
-
"Provide a reference audio snippet for speaker embedding, "
|
69 |
-
"enter text, and generate speech with Zonos TTS."
|
70 |
-
),
|
71 |
)
|
72 |
|
73 |
if __name__ == "__main__":
|
|
|
5 |
from zonos.model import Zonos
|
6 |
from zonos.conditioning import make_cond_dict
|
7 |
|
|
|
8 |
model = Zonos.from_pretrained("Zyphra/Zonos-v0.1-hybrid", device="cuda")
|
9 |
+
model.bfloat16()
|
10 |
|
|
|
11 |
def tts(text, reference_audio):
|
|
|
|
|
|
|
|
|
12 |
if reference_audio is None:
|
13 |
+
return None
|
14 |
|
15 |
+
# Gradio returns (sample_rate, audio_data) for type="numpy"
|
16 |
+
sr, wav_np = reference_audio
|
|
|
17 |
|
18 |
+
# Convert NumPy audio data to Torch tensor
|
19 |
+
wav_torch = torch.from_numpy(wav_np).float().unsqueeze(0)
|
20 |
if wav_torch.dim() == 2 and wav_torch.shape[0] > wav_torch.shape[1]:
|
|
|
21 |
wav_torch = wav_torch.T
|
22 |
+
|
23 |
# Create speaker embedding
|
24 |
spk_embedding = model.embed_spk_audio(wav_torch, sr)
|
25 |
|
|
|
31 |
)
|
32 |
conditioning = model.prepare_conditioning(cond_dict)
|
33 |
|
34 |
+
# Generate codes & decode
|
35 |
with torch.no_grad():
|
36 |
+
torch.manual_seed(421)
|
37 |
codes = model.generate(conditioning)
|
38 |
|
|
|
39 |
wavs = model.autoencoder.decode(codes).cpu()
|
40 |
+
out_audio = wavs[0].numpy()
|
41 |
+
|
42 |
+
# Return a tuple of (sample_rate, audio_data) for playback
|
43 |
return (model.autoencoder.sampling_rate, out_audio)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
45 |
demo = gr.Interface(
|
46 |
fn=tts,
|
47 |
inputs=[
|
48 |
gr.Textbox(label="Text to Synthesize"),
|
49 |
+
gr.Audio(type="numpy", label="Reference Audio (Speaker)"),
|
50 |
],
|
51 |
outputs=gr.Audio(label="Generated Audio"),
|
52 |
title="Zonos TTS Demo (Hybrid)",
|
53 |
+
description="Upload a reference audio for speaker embedding, enter text, and generate speech!"
|
|
|
|
|
|
|
54 |
)
|
55 |
|
56 |
if __name__ == "__main__":
|