Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu) | |
# 2024 Alibaba Inc (Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Modified from ESPnet(https://github.com/espnet/espnet) | |
"""Subsampling layer definition.""" | |
from typing import Tuple, Union | |
import torch | |
class BaseSubsampling(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.right_context = 0 | |
self.subsampling_rate = 1 | |
def position_encoding(self, offset: Union[int, torch.Tensor], | |
size: int) -> torch.Tensor: | |
return self.pos_enc.position_encoding(offset, size) | |
class LinearNoSubsampling(BaseSubsampling): | |
"""Linear transform the input without subsampling | |
Args: | |
idim (int): Input dimension. | |
odim (int): Output dimension. | |
dropout_rate (float): Dropout rate. | |
""" | |
def __init__(self, idim: int, odim: int, dropout_rate: float, | |
pos_enc_class: torch.nn.Module): | |
"""Construct an linear object.""" | |
super().__init__() | |
self.out = torch.nn.Sequential( | |
torch.nn.Linear(idim, odim), | |
torch.nn.LayerNorm(odim, eps=1e-5), | |
torch.nn.Dropout(dropout_rate), | |
) | |
self.pos_enc = pos_enc_class | |
self.right_context = 0 | |
self.subsampling_rate = 1 | |
def forward( | |
self, | |
x: torch.Tensor, | |
x_mask: torch.Tensor, | |
offset: Union[int, torch.Tensor] = 0 | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Input x. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, idim). | |
x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
Returns: | |
torch.Tensor: linear input tensor (#batch, time', odim), | |
where time' = time . | |
torch.Tensor: linear input mask (#batch, 1, time'), | |
where time' = time . | |
""" | |
x = self.out(x) | |
x, pos_emb = self.pos_enc(x, offset) | |
return x, pos_emb, x_mask | |