# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu) # 2024 Alibaba Inc (Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from ESPnet(https://github.com/espnet/espnet) """Subsampling layer definition.""" from typing import Tuple, Union import torch class BaseSubsampling(torch.nn.Module): def __init__(self): super().__init__() self.right_context = 0 self.subsampling_rate = 1 def position_encoding(self, offset: Union[int, torch.Tensor], size: int) -> torch.Tensor: return self.pos_enc.position_encoding(offset, size) class LinearNoSubsampling(BaseSubsampling): """Linear transform the input without subsampling Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. """ def __init__(self, idim: int, odim: int, dropout_rate: float, pos_enc_class: torch.nn.Module): """Construct an linear object.""" super().__init__() self.out = torch.nn.Sequential( torch.nn.Linear(idim, odim), torch.nn.LayerNorm(odim, eps=1e-5), torch.nn.Dropout(dropout_rate), ) self.pos_enc = pos_enc_class self.right_context = 0 self.subsampling_rate = 1 def forward( self, x: torch.Tensor, x_mask: torch.Tensor, offset: Union[int, torch.Tensor] = 0 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Input x. Args: x (torch.Tensor): Input tensor (#batch, time, idim). x_mask (torch.Tensor): Input mask (#batch, 1, time). Returns: torch.Tensor: linear input tensor (#batch, time', odim), where time' = time . torch.Tensor: linear input mask (#batch, 1, time'), where time' = time . """ x = self.out(x) x, pos_emb = self.pos_enc(x, offset) return x, pos_emb, x_mask