Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu) | |
# 2024 Alibaba Inc (Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Modified from ESPnet(https://github.com/espnet/espnet) | |
"""Positonal Encoding Module.""" | |
import math | |
from typing import Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
class EspnetRelPositionalEncoding(torch.nn.Module): | |
"""Relative positional encoding module (new implementation). | |
Details can be found in https://github.com/espnet/espnet/pull/2816. | |
See : Appendix B in https://arxiv.org/abs/1901.02860 | |
Args: | |
d_model (int): Embedding dimension. | |
dropout_rate (float): Dropout rate. | |
max_len (int): Maximum input length. | |
""" | |
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000): | |
"""Construct an PositionalEncoding object.""" | |
super(EspnetRelPositionalEncoding, self).__init__() | |
self.d_model = d_model | |
self.xscale = math.sqrt(self.d_model) | |
self.dropout = torch.nn.Dropout(p=dropout_rate) | |
self.pe = None | |
self.extend_pe(torch.tensor(0.0).expand(1, max_len)) | |
def extend_pe(self, x: torch.Tensor): | |
"""Reset the positional encodings.""" | |
if self.pe is not None: | |
# self.pe contains both positive and negative parts | |
# the length of self.pe is 2 * input_len - 1 | |
if self.pe.size(1) >= x.size(1) * 2 - 1: | |
if self.pe.dtype != x.dtype or self.pe.device != x.device: | |
self.pe = self.pe.to(dtype=x.dtype, device=x.device) | |
return | |
# Suppose `i` means to the position of query vecotr and `j` means the | |
# position of key vector. We use position relative positions when keys | |
# are to the left (i>j) and negative relative positions otherwise (i<j). | |
pe_positive = torch.zeros(x.size(1), self.d_model) | |
pe_negative = torch.zeros(x.size(1), self.d_model) | |
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, self.d_model, 2, dtype=torch.float32) | |
* -(math.log(10000.0) / self.d_model) | |
) | |
pe_positive[:, 0::2] = torch.sin(position * div_term) | |
pe_positive[:, 1::2] = torch.cos(position * div_term) | |
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) | |
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) | |
# Reserve the order of positive indices and concat both positive and | |
# negative indices. This is used to support the shifting trick | |
# as in https://arxiv.org/abs/1901.02860 | |
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) | |
pe_negative = pe_negative[1:].unsqueeze(0) | |
pe = torch.cat([pe_positive, pe_negative], dim=1) | |
self.pe = pe.to(device=x.device, dtype=x.dtype) | |
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0) \ | |
-> Tuple[torch.Tensor, torch.Tensor]: | |
"""Add positional encoding. | |
Args: | |
x (torch.Tensor): Input tensor (batch, time, `*`). | |
Returns: | |
torch.Tensor: Encoded tensor (batch, time, `*`). | |
""" | |
self.extend_pe(x) | |
x = x * self.xscale | |
pos_emb = self.position_encoding(size=x.size(1), offset=offset) | |
return self.dropout(x), self.dropout(pos_emb) | |
def position_encoding(self, | |
offset: Union[int, torch.Tensor], | |
size: int) -> torch.Tensor: | |
""" For getting encoding in a streaming fashion | |
Attention!!!!! | |
we apply dropout only once at the whole utterance level in a none | |
streaming way, but will call this function several times with | |
increasing input size in a streaming scenario, so the dropout will | |
be applied several times. | |
Args: | |
offset (int or torch.tensor): start offset | |
size (int): required size of position encoding | |
Returns: | |
torch.Tensor: Corresponding encoding | |
""" | |
pos_emb = self.pe[ | |
:, | |
self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size, | |
] | |
return pos_emb | |