File size: 4,766 Bytes
7e6946d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
#               2024 Alibaba Inc (Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
"""Positonal Encoding Module."""

import math
from typing import Tuple, Union

import torch
import torch.nn.functional as F
import numpy as np


class EspnetRelPositionalEncoding(torch.nn.Module):
    """Relative positional encoding module (new implementation).

    Details can be found in https://github.com/espnet/espnet/pull/2816.

    See : Appendix B in https://arxiv.org/abs/1901.02860

    Args:
        d_model (int): Embedding dimension.
        dropout_rate (float): Dropout rate.
        max_len (int): Maximum input length.

    """

    def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
        """Construct an PositionalEncoding object."""
        super(EspnetRelPositionalEncoding, self).__init__()
        self.d_model = d_model
        self.xscale = math.sqrt(self.d_model)
        self.dropout = torch.nn.Dropout(p=dropout_rate)
        self.pe = None
        self.extend_pe(torch.tensor(0.0).expand(1, max_len))

    def extend_pe(self, x: torch.Tensor):
        """Reset the positional encodings."""
        if self.pe is not None:
            # self.pe contains both positive and negative parts
            # the length of self.pe is 2 * input_len - 1
            if self.pe.size(1) >= x.size(1) * 2 - 1:
                if self.pe.dtype != x.dtype or self.pe.device != x.device:
                    self.pe = self.pe.to(dtype=x.dtype, device=x.device)
                return
        # Suppose `i` means to the position of query vecotr and `j` means the
        # position of key vector. We use position relative positions when keys
        # are to the left (i>j) and negative relative positions otherwise (i<j).
        pe_positive = torch.zeros(x.size(1), self.d_model)
        pe_negative = torch.zeros(x.size(1), self.d_model)
        position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, self.d_model, 2, dtype=torch.float32)
            * -(math.log(10000.0) / self.d_model)
        )
        pe_positive[:, 0::2] = torch.sin(position * div_term)
        pe_positive[:, 1::2] = torch.cos(position * div_term)
        pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
        pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)

        # Reserve the order of positive indices and concat both positive and
        # negative indices. This is used to support the shifting trick
        # as in https://arxiv.org/abs/1901.02860
        pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
        pe_negative = pe_negative[1:].unsqueeze(0)
        pe = torch.cat([pe_positive, pe_negative], dim=1)
        self.pe = pe.to(device=x.device, dtype=x.dtype)

    def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0) \
            -> Tuple[torch.Tensor, torch.Tensor]:
        """Add positional encoding.

        Args:
            x (torch.Tensor): Input tensor (batch, time, `*`).

        Returns:
            torch.Tensor: Encoded tensor (batch, time, `*`).

        """
        self.extend_pe(x)
        x = x * self.xscale
        pos_emb = self.position_encoding(size=x.size(1), offset=offset)
        return self.dropout(x), self.dropout(pos_emb)

    def position_encoding(self,
                          offset: Union[int, torch.Tensor],
                          size: int) -> torch.Tensor:
        """ For getting encoding in a streaming fashion

        Attention!!!!!
        we apply dropout only once at the whole utterance level in a none
        streaming way, but will call this function several times with
        increasing input size in a streaming scenario, so the dropout will
        be applied several times.

        Args:
            offset (int or torch.tensor): start offset
            size (int): required size of position encoding

        Returns:
            torch.Tensor: Corresponding encoding
        """
        pos_emb = self.pe[
            :,
            self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size,
        ]
        return pos_emb