PromptTrack / app.py
Anne Marthe Sophie Ngo Bibinbe
promptTrack installed
dbff38f
raw
history blame
7.67 kB
import gradio as gr
import numpy as np
import random
# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=2, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch(share=True)
# import gradio as gr
# import shutil
# import os
# import subprocess
# import sys
# # Run the .bat file before launching the app
# """try:
# import PromptTrack
# except ImportError:
# print("PromptTrack not found. Installing...")
# subprocess.run([sys.executable, "-m", "pip", "install",
# "--index-url", "https://test.pypi.org/simple/",
# "--extra-index-url", "https://pypi.org/simple/",
# "PromptTrack"], check=True)
# subprocess.run([sys.executable, "-m", "pip", "install",
# "--no-deps", "bytetracker"], check=True)
# import PromptTrack # Retry import after installation
# from PromptTrack import PromptTracker
# tracker = PromptTracker()"""
# def process_video(video_path, prompt):
# detection_threshold=0.3
# track_thresh=0.4
# match_thresh=1
# max_time_lost=float("inf")
# nbr_frames_fixing=800
# output_video = video_path.split('mp4')[0]+"_with_id.mp4" # Placeholder for processed video
# output_file = video_path.split('mp4')[0]+"_mot_.json" # Tracking result
# output_file_2 = video_path.split('mp4')[0]+"_object_detection.json" # detection results
# video_file = video_path
# """tracker.detect_objects(video_file, prompt=prompt, nms_threshold=0.8, detection_threshold=detection_threshold, detector="OWL-VITV2")
# tracker.process_mot(video_file, fixed_parc=True, track_thresh=track_thresh, match_thresh=match_thresh, frame_rate=25, max_time_lost=max_time_lost, nbr_frames_fixing=nbr_frames_fixing)
# tracker.read_video_with_mot(video_file, fps=25)
# """
# output_video = "output.mp4" # Placeholder for processed video
# output_file = "output.txt" # Placeholder for generated file
# # Copy the input video to simulate processing
# shutil.copy(video_path.name, output_video)
# # Create an output text file with the prompt content
# with open(output_file, "w") as f:
# f.write(f"User Prompt: {prompt}\n")
# return output_video, output_file
# # Define Gradio interface
# iface = gr.Interface(
# fn=process_video,
# inputs=[gr.File(label="Upload Video"), gr.Textbox(placeholder="Enter your prompt")],
# outputs=[gr.Video(), gr.File(label="Generated File")],
# title="Video Processing App",
# description="Upload a video and enter a prompt. The app will return the processed video and a generated file."
# )
# # Launch the app
# '''if __name__ == "__main__":
# iface.launch()
# '''
# import gradio as gr
# import shutil
# import os
# def process_video(video, prompt):
# output_video = "output.mp4" # Placeholder for processed video
# output_file = "output.txt" # Placeholder for generated file
# # Copy the input video to simulate processing
# shutil.copy(video.name, output_video)
# # Create an output text file with the prompt content
# with open(output_file, "w") as f:
# f.write(f"User Prompt: {prompt}\n")
# return output_video, output_file
# # Define Gradio interface
# iface = gr.Interface(
# fn=process_video,
# inputs=[gr.File(label="Upload Video"), gr.Textbox(placeholder="Enter your prompt")],
# outputs=[gr.Video(), gr.File(label="Generated File")],
# title="Video Processing App",
# description="Upload a video and enter a prompt. The app will return the processed video and a generated file."
# )
# # Launch the app
# if __name__ == "__main__":
# iface.launch(share=True)