File size: 7,671 Bytes
ac97752
1ad128d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbff38f
ac97752
22cc388
 
e2419ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419a2a6
e2419ad
 
419a2a6
 
e2419ad
 
22cc388
e2419ad
 
 
22cc388
e2419ad
22cc388
e2419ad
 
 
 
 
 
 
 
22cc388
287f781
e2419ad
 
 
 
2dd3506
 
ac97752
 
 
2dd3506
ac97752
 
 
2dd3506
ac97752
 
2dd3506
ac97752
 
 
2dd3506
ac97752
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import gradio as gr
import numpy as np
import random

# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=2,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch(share=True)



# import gradio as gr
# import shutil
# import os
# import subprocess
# import sys
# # Run the .bat file before launching the app
# """try:
#     import PromptTrack
# except ImportError:
#     print("PromptTrack not found. Installing...")
#     subprocess.run([sys.executable, "-m", "pip", "install", 
#                     "--index-url", "https://test.pypi.org/simple/", 
#                     "--extra-index-url", "https://pypi.org/simple/", 
#                     "PromptTrack"], check=True)
#     subprocess.run([sys.executable, "-m", "pip", "install", 
#                     "--no-deps", "bytetracker"], check=True)
#     import PromptTrack  # Retry import after installation


# from PromptTrack import PromptTracker
# tracker = PromptTracker()"""
# def process_video(video_path, prompt):
#     detection_threshold=0.3
#     track_thresh=0.4
#     match_thresh=1
#     max_time_lost=float("inf")
#     nbr_frames_fixing=800
#     output_video = video_path.split('mp4')[0]+"_with_id.mp4"  # Placeholder for processed video
#     output_file = video_path.split('mp4')[0]+"_mot_.json"    # Tracking result
#     output_file_2 = video_path.split('mp4')[0]+"_object_detection.json"    # detection results
#     video_file = video_path
#     """tracker.detect_objects(video_file, prompt=prompt, nms_threshold=0.8, detection_threshold=detection_threshold, detector="OWL-VITV2")
#     tracker.process_mot(video_file, fixed_parc=True, track_thresh=track_thresh, match_thresh=match_thresh, frame_rate=25, max_time_lost=max_time_lost, nbr_frames_fixing=nbr_frames_fixing)
#     tracker.read_video_with_mot(video_file, fps=25)
#     """
    
#     output_video = "output.mp4"  # Placeholder for processed video
#     output_file = "output.txt"    # Placeholder for generated file
    
    
#     # Copy the input video to simulate processing
#     shutil.copy(video_path.name, output_video)
    
#     # Create an output text file with the prompt content
#     with open(output_file, "w") as f:
#         f.write(f"User Prompt: {prompt}\n")
    
#     return output_video, output_file

# # Define Gradio interface
# iface = gr.Interface(
#     fn=process_video,
#     inputs=[gr.File(label="Upload Video"), gr.Textbox(placeholder="Enter your prompt")],
#     outputs=[gr.Video(), gr.File(label="Generated File")],
#     title="Video Processing App",
#     description="Upload a video and enter a prompt. The app will return the processed video and a generated file."
# )


# # Launch the app
# '''if __name__ == "__main__":
#     iface.launch()
# '''


# import gradio as gr
# import shutil
# import os

# def process_video(video, prompt):
#     output_video = "output.mp4"  # Placeholder for processed video
#     output_file = "output.txt"    # Placeholder for generated file
    
#     # Copy the input video to simulate processing
#     shutil.copy(video.name, output_video)
    
#     # Create an output text file with the prompt content
#     with open(output_file, "w") as f:
#         f.write(f"User Prompt: {prompt}\n")
    
#     return output_video, output_file

# # Define Gradio interface
# iface = gr.Interface(
#     fn=process_video,
#     inputs=[gr.File(label="Upload Video"), gr.Textbox(placeholder="Enter your prompt")],
#     outputs=[gr.Video(), gr.File(label="Generated File")],
#     title="Video Processing App",
#     description="Upload a video and enter a prompt. The app will return the processed video and a generated file."
# )

# # Launch the app
# if __name__ == "__main__":
#     iface.launch(share=True)