Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,9 @@ os.system("pip install git+https://github.com/shumingma/transformers.git")
|
|
| 4 |
|
| 5 |
import threading
|
| 6 |
import torch
|
|
|
|
|
|
|
|
|
|
| 7 |
from transformers import (
|
| 8 |
AutoModelForCausalLM,
|
| 9 |
AutoTokenizer,
|
|
@@ -32,6 +35,21 @@ def respond(
|
|
| 32 |
temperature: float,
|
| 33 |
top_p: float,
|
| 34 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
messages = [{"role": "system", "content": system_message}]
|
| 36 |
for user_msg, bot_msg in history:
|
| 37 |
if user_msg:
|
|
@@ -40,18 +58,33 @@ def respond(
|
|
| 40 |
messages.append({"role": "assistant", "content": bot_msg})
|
| 41 |
messages.append({"role": "user", "content": message})
|
| 42 |
|
| 43 |
-
prompt
|
|
|
|
|
|
|
|
|
|
| 44 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 45 |
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
**inputs,
|
|
|
|
| 48 |
max_new_tokens=max_tokens,
|
| 49 |
temperature=temperature,
|
| 50 |
top_p=top_p,
|
| 51 |
-
do_sample=True
|
| 52 |
)
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
# Initialize Gradio chat interface
|
| 57 |
|
|
@@ -106,4 +139,4 @@ demo = gr.ChatInterface(
|
|
| 106 |
)
|
| 107 |
|
| 108 |
if __name__ == "__main__":
|
| 109 |
-
demo.launch()
|
|
|
|
| 4 |
|
| 5 |
import threading
|
| 6 |
import torch
|
| 7 |
+
import torch._dynamo
|
| 8 |
+
torch._dynamo.config.suppress_errors = True
|
| 9 |
+
|
| 10 |
from transformers import (
|
| 11 |
AutoModelForCausalLM,
|
| 12 |
AutoTokenizer,
|
|
|
|
| 35 |
temperature: float,
|
| 36 |
top_p: float,
|
| 37 |
):
|
| 38 |
+
"""
|
| 39 |
+
Generate a chat response using streaming with TextIteratorStreamer.
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
message: User's current message.
|
| 43 |
+
history: List of (user, assistant) tuples from previous turns.
|
| 44 |
+
system_message: Initial system prompt guiding the assistant.
|
| 45 |
+
max_tokens: Maximum number of tokens to generate.
|
| 46 |
+
temperature: Sampling temperature.
|
| 47 |
+
top_p: Nucleus sampling probability.
|
| 48 |
+
|
| 49 |
+
Yields:
|
| 50 |
+
The growing response text as new tokens are generated.
|
| 51 |
+
"""
|
| 52 |
+
# Assemble messages
|
| 53 |
messages = [{"role": "system", "content": system_message}]
|
| 54 |
for user_msg, bot_msg in history:
|
| 55 |
if user_msg:
|
|
|
|
| 58 |
messages.append({"role": "assistant", "content": bot_msg})
|
| 59 |
messages.append({"role": "user", "content": message})
|
| 60 |
|
| 61 |
+
# Prepare prompt and tokenize
|
| 62 |
+
prompt = tokenizer.apply_chat_template(
|
| 63 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 64 |
+
)
|
| 65 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 66 |
|
| 67 |
+
# Set up streamer for real-time output
|
| 68 |
+
streamer = TextIteratorStreamer(
|
| 69 |
+
tokenizer, skip_prompt=True, skip_special_tokens=True
|
| 70 |
+
)
|
| 71 |
+
generate_kwargs = dict(
|
| 72 |
**inputs,
|
| 73 |
+
streamer=streamer,
|
| 74 |
max_new_tokens=max_tokens,
|
| 75 |
temperature=temperature,
|
| 76 |
top_p=top_p,
|
| 77 |
+
do_sample=True,
|
| 78 |
)
|
| 79 |
+
# Start generation in a separate thread
|
| 80 |
+
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
|
| 81 |
+
thread.start()
|
| 82 |
+
|
| 83 |
+
# Stream tokens back to user
|
| 84 |
+
response = ""
|
| 85 |
+
for new_text in streamer:
|
| 86 |
+
response += new_text
|
| 87 |
+
yield response
|
| 88 |
|
| 89 |
# Initialize Gradio chat interface
|
| 90 |
|
|
|
|
| 139 |
)
|
| 140 |
|
| 141 |
if __name__ == "__main__":
|
| 142 |
+
demo.launch()
|