Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -32,21 +32,6 @@ def respond(
|
|
| 32 |
temperature: float,
|
| 33 |
top_p: float,
|
| 34 |
):
|
| 35 |
-
"""
|
| 36 |
-
Generate a chat response using streaming with TextIteratorStreamer.
|
| 37 |
-
|
| 38 |
-
Args:
|
| 39 |
-
message: User's current message.
|
| 40 |
-
history: List of (user, assistant) tuples from previous turns.
|
| 41 |
-
system_message: Initial system prompt guiding the assistant.
|
| 42 |
-
max_tokens: Maximum number of tokens to generate.
|
| 43 |
-
temperature: Sampling temperature.
|
| 44 |
-
top_p: Nucleus sampling probability.
|
| 45 |
-
|
| 46 |
-
Yields:
|
| 47 |
-
The growing response text as new tokens are generated.
|
| 48 |
-
"""
|
| 49 |
-
# Assemble messages
|
| 50 |
messages = [{"role": "system", "content": system_message}]
|
| 51 |
for user_msg, bot_msg in history:
|
| 52 |
if user_msg:
|
|
@@ -55,33 +40,18 @@ def respond(
|
|
| 55 |
messages.append({"role": "assistant", "content": bot_msg})
|
| 56 |
messages.append({"role": "user", "content": message})
|
| 57 |
|
| 58 |
-
|
| 59 |
-
prompt = tokenizer.apply_chat_template(
|
| 60 |
-
messages, tokenize=False, add_generation_prompt=True
|
| 61 |
-
)
|
| 62 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 63 |
|
| 64 |
-
|
| 65 |
-
streamer = TextIteratorStreamer(
|
| 66 |
-
tokenizer, skip_prompt=True, skip_special_tokens=True
|
| 67 |
-
)
|
| 68 |
-
generate_kwargs = dict(
|
| 69 |
**inputs,
|
| 70 |
-
streamer=streamer,
|
| 71 |
max_new_tokens=max_tokens,
|
| 72 |
temperature=temperature,
|
| 73 |
top_p=top_p,
|
| 74 |
-
do_sample=True
|
| 75 |
)
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
thread.start()
|
| 79 |
-
|
| 80 |
-
# Stream tokens back to user
|
| 81 |
-
response = ""
|
| 82 |
-
for new_text in streamer:
|
| 83 |
-
response += new_text
|
| 84 |
-
yield response
|
| 85 |
|
| 86 |
# Initialize Gradio chat interface
|
| 87 |
|
|
|
|
| 32 |
temperature: float,
|
| 33 |
top_p: float,
|
| 34 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
messages = [{"role": "system", "content": system_message}]
|
| 36 |
for user_msg, bot_msg in history:
|
| 37 |
if user_msg:
|
|
|
|
| 40 |
messages.append({"role": "assistant", "content": bot_msg})
|
| 41 |
messages.append({"role": "user", "content": message})
|
| 42 |
|
| 43 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
|
|
|
|
|
|
| 44 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 45 |
|
| 46 |
+
outputs = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
**inputs,
|
|
|
|
| 48 |
max_new_tokens=max_tokens,
|
| 49 |
temperature=temperature,
|
| 50 |
top_p=top_p,
|
| 51 |
+
do_sample=True
|
| 52 |
)
|
| 53 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 54 |
+
yield response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
# Initialize Gradio chat interface
|
| 57 |
|