SmoLLMv2 / smollmv2.py
Shilpaj's picture
Feat: Upload app files
f42f624 verified
#! /usr/bin/env python
"""
SmollmV2 model implementation
Author: Shilpaj Bhalerao
Date: 2025-01-19
"""
# Third-Party Imports
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
# Local Imports
from config import SmollmConfig, RoPEConfig
class RoPEAttention:
"""
Rotary Position Embedding attention with support for different Q/K dimensions
"""
def __init__(self, head_dim, kv_dim, base=RoPEConfig.base):
"""
Initialize rotary embeddings
Args:
head_dim: Dimension of query head
kv_dim: Dimension of key/value head
base: Base for the angle calculations (default: 10000)
"""
super().__init__()
# Generate theta parameter for rotary embeddings for both Q and K dimensions
inv_freq_k = 1.0 / (base ** (torch.arange(0, kv_dim, 2).float() / kv_dim))
self.register_buffer('inv_freq_k', inv_freq_k)
self.head_dim = head_dim
self.kv_dim = kv_dim
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def _update_cos_sin_cache(self, x, seq_len):
"""Update cached cos and sin values for given sequence length"""
if seq_len != self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq_k)
freqs = torch.einsum('i,j->ij', t, self.inv_freq_k)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.cos_cached = emb.cos()[None, None, :, :]
self.sin_cached = emb.sin()[None, None, :, :]
def _rotate_half(self, x):
"""Rotate half the hidden dims of the input."""
x1 = x[..., :x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def __call__(self, q, k):
"""
Apply rotary embeddings to input queries and keys
Args:
q: Query tensor of shape (batch, n_head, seq_len, head_dim)
k: Key tensor of shape (batch, n_head, seq_len, kv_dim)
Returns:
q_rot: Rotated query tensor
k_rot: Rotated key tensor
"""
seq_len = q.shape[2]
self._update_cos_sin_cache(k, seq_len)
# Apply rotary embeddings to keys
k_cos = self.cos_cached[..., :self.kv_dim]
k_sin = self.sin_cached[..., :self.kv_dim]
k_rot = (k * k_cos) + (self._rotate_half(k) * k_sin)
# For queries, we only apply rotation to the part that interacts with keys
q_part = q[..., :self.kv_dim]
q_cos = self.cos_cached[..., :self.kv_dim]
q_sin = self.sin_cached[..., :self.kv_dim]
q_rot_part = (q_part * q_cos) + (self._rotate_half(q_part) * q_sin)
# Combine rotated part with unrotated parts for query
q_rot = torch.cat([q_rot_part, q[..., self.kv_dim:]], dim=-1)
return q_rot, k_rot
def register_buffer(self, name, tensor):
"""Helper function to register a buffer"""
setattr(self, name, tensor)
class CausalSelfAttention(nn.Module):
"""
Causal self-attention mechanism with reduced KV dimensions and RoPE
"""
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# Calculate dimensions
self.head_dim = config.n_embd // config.n_head # 576/9 = 64
self.n_head = config.n_head
self.n_embd = config.n_embd
# Make kv_dim divisible by n_head (189 is closest to 192 that's divisible by 9)
self.kv_dim = 189 # 189 = 9 * 21, closest to 192 that's divisible by 9
self.kv_dim_per_head = self.kv_dim // self.n_head # 21
# Separate projections with reduced dimensions for k,v
self.q_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)
self.k_proj = nn.Linear(config.n_embd, self.kv_dim, bias=False) # 189 dimensions
self.v_proj = nn.Linear(config.n_embd, self.kv_dim, bias=False) # 189 dimensions
# output projection
self.o_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)
# rotary embeddings
self.rope = RoPEAttention(self.head_dim, self.kv_dim_per_head)
def forward(self, x):
B, T, C = x.size()
# calculate query, key, values
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
# reshape with exact dimensions
q = q.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
k = k.view(B, T, self.n_head, self.kv_dim_per_head).transpose(1, 2)
v = v.view(B, T, self.n_head, self.kv_dim_per_head).transpose(1, 2)
# apply rotary embeddings
q, k = self.rope(q, k)
# pad k and v to match q dimension for attention
k_pad = torch.zeros_like(q)
v_pad = torch.zeros_like(q)
k_pad[..., :self.kv_dim_per_head] = k
v_pad[..., :self.kv_dim_per_head] = v
# flash attention
y = F.scaled_dot_product_attention(q, k_pad, v_pad, is_causal=True)
# reshape back
y = y.transpose(1, 2).contiguous().view(B, T, C)
# output projection
y = self.o_proj(y)
return y
class MLP(nn.Module):
"""
MLP (Multi-Layer Perceptron) layer with gate/up/down projection structure
"""
def __init__(self, config):
super().__init__()
hidden_dim = int(config.n_embd * config.mlp_ratio) - 1
self.gate_proj = nn.Linear(config.n_embd, hidden_dim, bias=False)
self.up_proj = nn.Linear(config.n_embd, hidden_dim, bias=False)
self.down_proj = nn.Linear(hidden_dim, config.n_embd, bias=False)
self.down_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
# SwiGLU activation as used in PaLM, Llama, etc.
gate = self.gate_proj(x)
up = self.up_proj(x)
x = F.silu(gate) * up
x = self.down_proj(x)
return x
class Block(nn.Module):
"""
Transformer block
"""
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd, bias=False)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd, bias=False)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class SmollmV2(nn.Module):
"""
SmollmV2 model
"""
def __init__(self, config=SmollmConfig()):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd, bias=False),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# weight sharing
self.transformer.wte.weight = self.lm_head.weight
# weight initialization
self.apply(self._init_weights)
# Compile the model if torch version supports it
if hasattr(torch, 'compile'):
self.forward = torch.compile(self.forward)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.04)
def forward(self, idx, targets=None):
# idx is of shape (B, T)
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
# forward the token and posisition embeddings
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
x = tok_emb
# forward the blocks of the transformer
for block in self.transformer.h:
x = block(x)
# forward the final layernorm and the classifier
x = self.transformer.ln_f(x)
logits = self.lm_head(x) # (B, T, vocab_size)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss