File size: 8,664 Bytes
f42f624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#! /usr/bin/env python
"""
SmollmV2 model implementation
Author: Shilpaj Bhalerao
Date: 2025-01-19
"""
# Third-Party Imports
import torch
import torch.nn as nn
import torch.nn.functional as F
import math

# Local Imports
from config import SmollmConfig, RoPEConfig


class RoPEAttention:
    """
    Rotary Position Embedding attention with support for different Q/K dimensions
    """
    def __init__(self, head_dim, kv_dim, base=RoPEConfig.base):
        """
        Initialize rotary embeddings
        Args:
            head_dim: Dimension of query head
            kv_dim: Dimension of key/value head
            base: Base for the angle calculations (default: 10000)
        """
        super().__init__()
        
        # Generate theta parameter for rotary embeddings for both Q and K dimensions
        inv_freq_k = 1.0 / (base ** (torch.arange(0, kv_dim, 2).float() / kv_dim))
        self.register_buffer('inv_freq_k', inv_freq_k)
        
        self.head_dim = head_dim
        self.kv_dim = kv_dim
        self.seq_len_cached = None
        self.cos_cached = None
        self.sin_cached = None

    def _update_cos_sin_cache(self, x, seq_len):
        """Update cached cos and sin values for given sequence length"""
        if seq_len != self.seq_len_cached:
            self.seq_len_cached = seq_len
            t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq_k)
            freqs = torch.einsum('i,j->ij', t, self.inv_freq_k)
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            
            self.cos_cached = emb.cos()[None, None, :, :]
            self.sin_cached = emb.sin()[None, None, :, :]

    def _rotate_half(self, x):
        """Rotate half the hidden dims of the input."""
        x1 = x[..., :x.shape[-1] // 2]
        x2 = x[..., x.shape[-1] // 2:]
        return torch.cat((-x2, x1), dim=-1)

    def __call__(self, q, k):
        """
        Apply rotary embeddings to input queries and keys
        Args:
            q: Query tensor of shape (batch, n_head, seq_len, head_dim)
            k: Key tensor of shape (batch, n_head, seq_len, kv_dim)
        Returns:
            q_rot: Rotated query tensor
            k_rot: Rotated key tensor
        """
        seq_len = q.shape[2]
        self._update_cos_sin_cache(k, seq_len)
        
        # Apply rotary embeddings to keys
        k_cos = self.cos_cached[..., :self.kv_dim]
        k_sin = self.sin_cached[..., :self.kv_dim]
        k_rot = (k * k_cos) + (self._rotate_half(k) * k_sin)
        
        # For queries, we only apply rotation to the part that interacts with keys
        q_part = q[..., :self.kv_dim]
        q_cos = self.cos_cached[..., :self.kv_dim]
        q_sin = self.sin_cached[..., :self.kv_dim]
        q_rot_part = (q_part * q_cos) + (self._rotate_half(q_part) * q_sin)
        
        # Combine rotated part with unrotated parts for query
        q_rot = torch.cat([q_rot_part, q[..., self.kv_dim:]], dim=-1)
        
        return q_rot, k_rot

    def register_buffer(self, name, tensor):
        """Helper function to register a buffer"""
        setattr(self, name, tensor)


class CausalSelfAttention(nn.Module):
    """
    Causal self-attention mechanism with reduced KV dimensions and RoPE
    """
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        
        # Calculate dimensions
        self.head_dim = config.n_embd // config.n_head  # 576/9 = 64
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        
        # Make kv_dim divisible by n_head (189 is closest to 192 that's divisible by 9)
        self.kv_dim = 189  # 189 = 9 * 21, closest to 192 that's divisible by 9
        self.kv_dim_per_head = self.kv_dim // self.n_head  # 21
        
        # Separate projections with reduced dimensions for k,v
        self.q_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)
        self.k_proj = nn.Linear(config.n_embd, self.kv_dim, bias=False)  # 189 dimensions
        self.v_proj = nn.Linear(config.n_embd, self.kv_dim, bias=False)  # 189 dimensions
        
        # output projection
        self.o_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)
        
        # rotary embeddings
        self.rope = RoPEAttention(self.head_dim, self.kv_dim_per_head)

    def forward(self, x):
        B, T, C = x.size()
        
        # calculate query, key, values
        q = self.q_proj(x)
        k = self.k_proj(x)
        v = self.v_proj(x)
        
        # reshape with exact dimensions
        q = q.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
        k = k.view(B, T, self.n_head, self.kv_dim_per_head).transpose(1, 2)
        v = v.view(B, T, self.n_head, self.kv_dim_per_head).transpose(1, 2)

        # apply rotary embeddings
        q, k = self.rope(q, k)

        # pad k and v to match q dimension for attention
        k_pad = torch.zeros_like(q)
        v_pad = torch.zeros_like(q)
        k_pad[..., :self.kv_dim_per_head] = k
        v_pad[..., :self.kv_dim_per_head] = v

        # flash attention
        y = F.scaled_dot_product_attention(q, k_pad, v_pad, is_causal=True)

        # reshape back
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        
        # output projection
        y = self.o_proj(y)
        return y


class MLP(nn.Module):
    """
    MLP (Multi-Layer Perceptron) layer with gate/up/down projection structure
    """
    def __init__(self, config):
        super().__init__()
        hidden_dim = int(config.n_embd * config.mlp_ratio) - 1
        self.gate_proj = nn.Linear(config.n_embd, hidden_dim, bias=False)
        self.up_proj = nn.Linear(config.n_embd, hidden_dim, bias=False)
        self.down_proj = nn.Linear(hidden_dim, config.n_embd, bias=False)
        self.down_proj.NANOGPT_SCALE_INIT = 1

    def forward(self, x):
        # SwiGLU activation as used in PaLM, Llama, etc.
        gate = self.gate_proj(x)
        up = self.up_proj(x)
        x = F.silu(gate) * up
        x = self.down_proj(x)
        return x


class Block(nn.Module):
    """
    Transformer block
    """
    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd, bias=False)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd, bias=False)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


class SmollmV2(nn.Module):
    """
    SmollmV2 model
    """
    def __init__(self, config=SmollmConfig()):
        super().__init__()
        self.config = config

        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f = nn.LayerNorm(config.n_embd, bias=False),
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

        # weight sharing
        self.transformer.wte.weight = self.lm_head.weight

        # weight initialization
        self.apply(self._init_weights)
        
        # Compile the model if torch version supports it
        if hasattr(torch, 'compile'):
            self.forward = torch.compile(self.forward)

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            std = 0.02
            if hasattr(module, 'NANGPT_SCALE_INIT'):
                std *= (2 * self.config.n_layer) ** -0.5
            torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std = 0.04)

    def forward(self, idx, targets=None):
        # idx is of shape (B, T)
        B, T = idx.size()
        assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
        # forward the token and posisition embeddings
        tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
        x = tok_emb
        # forward the blocks of the transformer
        for block in self.transformer.h:
            x = block(x)
        # forward the final layernorm and the classifier
        x = self.transformer.ln_f(x)
        logits = self.lm_head(x) # (B, T, vocab_size)
        loss = None
        if targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
        return logits, loss