Spaces:
Sleeping
Sleeping
| import os | |
| import sys | |
| import logging | |
| import gradio as gr | |
| from pinecone import Pinecone, ServerlessSpec | |
| from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, StorageContext | |
| from llama_index.vector_stores.pinecone import PineconeVectorStore | |
| # --- Logging --- | |
| logging.basicConfig(stream=sys.stdout, level=logging.INFO) | |
| # --- API Key from Environment --- | |
| api_key = os.getenv("PINECONE_API_KEY") | |
| if not api_key: | |
| raise ValueError("Please set the PINECONE_API_KEY as an environment variable.") | |
| # --- Pinecone Setup --- | |
| pc = Pinecone(api_key=api_key) | |
| index_name = "quickstart" | |
| dimension = 1536 | |
| # Create index if not exists | |
| if index_name not in [idx['name'] for idx in pc.list_indexes()]: | |
| pc.create_index( | |
| name=index_name, | |
| dimension=dimension, | |
| metric="euclidean", | |
| spec=ServerlessSpec(cloud="aws", region="us-east-1") | |
| ) | |
| pinecone_index = pc.Index(index_name) | |
| # --- Load Document --- | |
| os.makedirs("data/paul_graham", exist_ok=True) | |
| if not os.path.exists("data/paul_graham/paul_graham_essay.txt"): | |
| import requests | |
| url = "https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt" | |
| r = requests.get(url) | |
| with open("data/paul_graham/paul_graham_essay.txt", "w") as f: | |
| f.write(r.text) | |
| documents = SimpleDirectoryReader("data/paul_graham").load_data() | |
| # --- Indexing --- | |
| vector_store = PineconeVectorStore(pinecone_index=pinecone_index) | |
| storage_context = StorageContext.from_defaults(vector_store=vector_store) | |
| index = VectorStoreIndex.from_documents(documents, storage_context=storage_context) | |
| query_engine = index.as_query_engine() | |
| # --- Query Function --- | |
| def ask_question(prompt): | |
| try: | |
| response = query_engine.query(prompt) | |
| return str(response) | |
| except Exception as e: | |
| return f"β Error: {str(e)}" | |
| # --- Gradio UI --- | |
| with gr.Blocks(css=""" | |
| body { | |
| background-color: #f5f5dc; | |
| font-family: 'Georgia', 'Merriweather', serif; | |
| } | |
| h1, h2, h3 { | |
| color: #4e342e; | |
| } | |
| .gr-box, .gr-column, .gr-group { | |
| border-radius: 15px; | |
| padding: 20px; | |
| background-color: #fffaf0; | |
| box-shadow: 2px 4px 14px rgba(0, 0, 0, 0.1); | |
| margin-top: 10px; | |
| } | |
| textarea, input[type="text"] { | |
| background-color: #fffaf0; | |
| border: 1px solid #d2b48c; | |
| color: #4e342e; | |
| border-radius: 8px; | |
| } | |
| button { | |
| background-color: #a1887f; | |
| color: white; | |
| font-weight: bold; | |
| border-radius: 8px; | |
| transition: background-color 0.3s ease; | |
| } | |
| button:hover { | |
| background-color: #8d6e63; | |
| } | |
| .gr-button { | |
| border-radius: 8px !important; | |
| } | |
| """) as demo: | |
| with gr.Column(): | |
| gr.Markdown(""" | |
| <div style='text-align: center;'> | |
| <h1>π§ Paul Graham Essay Q&A</h1> | |
| <div style='font-size: 1.1em; color: #6d4c41; margin-bottom: 1em;'> | |
| Explore insights from Paul Graham's essay using semantic search powered by <strong>LlamaIndex</strong> + <strong>Pinecone</strong>. | |
| </div> | |
| </div> | |
| """) | |
| with gr.Accordion("βΉοΈ What is Pinecone Vector Indexing?", open=False): | |
| gr.Markdown(""" | |
| **Pinecone** is a vector database that stores document embeddings (numeric representations of meaning). When you ask a question, it's converted into a vector and compared against stored vectors to find the most relevant answers β even if they don't match word-for-word. | |
| """) | |
| gr.Markdown("### π Ask your question below:") | |
| with gr.Group(): | |
| with gr.Row(): | |
| user_input = gr.Textbox( | |
| placeholder="E.g., What does Paul Graham say about startups?", | |
| label="Your Question", | |
| lines=2 | |
| ) | |
| with gr.Row(): | |
| output = gr.Textbox(label="Answer", lines=6) | |
| with gr.Row(): | |
| submit_btn = gr.Button("π Search Essay") | |
| clear_btn = gr.Button("π§Ή Clear") | |
| submit_btn.click(fn=ask_question, inputs=user_input, outputs=output) | |
| clear_btn.click(fn=lambda: ("", ""), inputs=None, outputs=[user_input, output]) | |
| demo.launch() | |