Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,30 +3,21 @@ import sys
|
|
3 |
import logging
|
4 |
import gradio as gr
|
5 |
from pinecone import Pinecone, ServerlessSpec
|
6 |
-
from
|
7 |
-
from
|
8 |
-
from langchain.text_splitter import CharacterTextSplitter
|
9 |
-
from langchain.chains import RetrievalQA
|
10 |
-
from langchain_community.llms import OpenAI
|
11 |
-
from langchain_openai import OpenAIEmbeddings
|
12 |
|
13 |
# --- Logging ---
|
14 |
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
15 |
|
16 |
-
# --- Environment
|
17 |
api_key = os.getenv("PINECONE_API_KEY")
|
18 |
-
openai_api_key = os.getenv("OPENAI_API_KEY")
|
19 |
-
|
20 |
if not api_key:
|
21 |
raise ValueError("Please set the PINECONE_API_KEY as an environment variable.")
|
22 |
-
if not openai_api_key:
|
23 |
-
raise ValueError("Please set the OPENAI_API_KEY as an environment variable.")
|
24 |
-
os.environ["OPENAI_API_KEY"] = openai_api_key
|
25 |
|
26 |
# --- Pinecone Setup ---
|
|
|
27 |
index_name = "quickstart"
|
28 |
dimension = 1536
|
29 |
-
pc = Pinecone(api_key=api_key)
|
30 |
|
31 |
# Create index if not exists
|
32 |
if index_name not in [idx['name'] for idx in pc.list_indexes()]:
|
@@ -37,52 +28,87 @@ if index_name not in [idx['name'] for idx in pc.list_indexes()]:
|
|
37 |
spec=ServerlessSpec(cloud="aws", region="us-east-1")
|
38 |
)
|
39 |
|
40 |
-
|
|
|
|
|
41 |
os.makedirs("data/paul_graham", exist_ok=True)
|
42 |
-
|
43 |
-
if not os.path.exists(file_path):
|
44 |
import requests
|
45 |
url = "https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt"
|
46 |
r = requests.get(url)
|
47 |
-
with open(
|
48 |
f.write(r.text)
|
49 |
|
50 |
-
|
51 |
-
documents = loader.load()
|
52 |
-
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
53 |
-
texts = text_splitter.split_documents(documents)
|
54 |
-
|
55 |
-
# --- Embedding and Vector Store ---
|
56 |
-
embeddings = OpenAIEmbeddings()
|
57 |
-
docsearch = PineconeVectorStore.from_documents(texts, embeddings, index_name=index_name)
|
58 |
|
59 |
-
# ---
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
63 |
|
64 |
# --- Query Function ---
|
65 |
def ask_question(prompt):
|
66 |
try:
|
67 |
-
response =
|
68 |
return str(response)
|
69 |
except Exception as e:
|
70 |
return f"β Error: {str(e)}"
|
71 |
|
72 |
# --- Gradio UI ---
|
73 |
-
with gr.Blocks(css="""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
with gr.Column():
|
75 |
gr.Markdown("""
|
76 |
<div style='text-align: center;'>
|
77 |
<h1>π§ Paul Graham Essay Q&A</h1>
|
78 |
<div style='font-size: 1.1em; color: #6d4c41; margin-bottom: 1em;'>
|
79 |
-
Explore insights from Paul Graham's essay using semantic search powered by <strong>
|
80 |
</div>
|
81 |
</div>
|
82 |
""")
|
|
|
83 |
with gr.Accordion("βΉοΈ What is Pinecone Vector Indexing?", open=False):
|
84 |
-
gr.Markdown("""
|
|
|
|
|
|
|
85 |
gr.Markdown("### π Ask your question below:")
|
|
|
86 |
with gr.Group():
|
87 |
with gr.Row():
|
88 |
user_input = gr.Textbox(
|
@@ -90,12 +116,15 @@ with gr.Blocks(css="""body { background-color: #f5f5dc; font-family: 'Geor
|
|
90 |
label="Your Question",
|
91 |
lines=2
|
92 |
)
|
|
|
93 |
with gr.Row():
|
94 |
output = gr.Textbox(label="Answer", lines=6)
|
|
|
95 |
with gr.Row():
|
96 |
submit_btn = gr.Button("π Search Essay")
|
97 |
clear_btn = gr.Button("π§Ή Clear")
|
|
|
98 |
submit_btn.click(fn=ask_question, inputs=user_input, outputs=output)
|
99 |
clear_btn.click(fn=lambda: ("", ""), inputs=None, outputs=[user_input, output])
|
100 |
|
101 |
-
demo.launch()
|
|
|
3 |
import logging
|
4 |
import gradio as gr
|
5 |
from pinecone import Pinecone, ServerlessSpec
|
6 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, StorageContext
|
7 |
+
from llama_index.vector_stores.pinecone import PineconeVectorStore
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# --- Logging ---
|
10 |
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
11 |
|
12 |
+
# --- API Key from Environment ---
|
13 |
api_key = os.getenv("PINECONE_API_KEY")
|
|
|
|
|
14 |
if not api_key:
|
15 |
raise ValueError("Please set the PINECONE_API_KEY as an environment variable.")
|
|
|
|
|
|
|
16 |
|
17 |
# --- Pinecone Setup ---
|
18 |
+
pc = Pinecone(api_key=api_key)
|
19 |
index_name = "quickstart"
|
20 |
dimension = 1536
|
|
|
21 |
|
22 |
# Create index if not exists
|
23 |
if index_name not in [idx['name'] for idx in pc.list_indexes()]:
|
|
|
28 |
spec=ServerlessSpec(cloud="aws", region="us-east-1")
|
29 |
)
|
30 |
|
31 |
+
pinecone_index = pc.Index(index_name)
|
32 |
+
|
33 |
+
# --- Load Document ---
|
34 |
os.makedirs("data/paul_graham", exist_ok=True)
|
35 |
+
if not os.path.exists("data/paul_graham/paul_graham_essay.txt"):
|
|
|
36 |
import requests
|
37 |
url = "https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt"
|
38 |
r = requests.get(url)
|
39 |
+
with open("data/paul_graham/paul_graham_essay.txt", "w") as f:
|
40 |
f.write(r.text)
|
41 |
|
42 |
+
documents = SimpleDirectoryReader("data/paul_graham").load_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# --- Indexing ---
|
45 |
+
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
|
46 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
47 |
+
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
|
48 |
+
query_engine = index.as_query_engine()
|
49 |
|
50 |
# --- Query Function ---
|
51 |
def ask_question(prompt):
|
52 |
try:
|
53 |
+
response = query_engine.query(prompt)
|
54 |
return str(response)
|
55 |
except Exception as e:
|
56 |
return f"β Error: {str(e)}"
|
57 |
|
58 |
# --- Gradio UI ---
|
59 |
+
with gr.Blocks(css="""
|
60 |
+
body {
|
61 |
+
background-color: #f5f5dc;
|
62 |
+
font-family: 'Georgia', 'Merriweather', serif;
|
63 |
+
}
|
64 |
+
h1, h2, h3 {
|
65 |
+
color: #4e342e;
|
66 |
+
}
|
67 |
+
.gr-box, .gr-column, .gr-group {
|
68 |
+
border-radius: 15px;
|
69 |
+
padding: 20px;
|
70 |
+
background-color: #fffaf0;
|
71 |
+
box-shadow: 2px 4px 14px rgba(0, 0, 0, 0.1);
|
72 |
+
margin-top: 10px;
|
73 |
+
}
|
74 |
+
textarea, input[type="text"] {
|
75 |
+
background-color: #fffaf0;
|
76 |
+
border: 1px solid #d2b48c;
|
77 |
+
color: #4e342e;
|
78 |
+
border-radius: 8px;
|
79 |
+
}
|
80 |
+
button {
|
81 |
+
background-color: #a1887f;
|
82 |
+
color: white;
|
83 |
+
font-weight: bold;
|
84 |
+
border-radius: 8px;
|
85 |
+
transition: background-color 0.3s ease;
|
86 |
+
}
|
87 |
+
button:hover {
|
88 |
+
background-color: #8d6e63;
|
89 |
+
}
|
90 |
+
.gr-button {
|
91 |
+
border-radius: 8px !important;
|
92 |
+
}
|
93 |
+
""") as demo:
|
94 |
+
|
95 |
with gr.Column():
|
96 |
gr.Markdown("""
|
97 |
<div style='text-align: center;'>
|
98 |
<h1>π§ Paul Graham Essay Q&A</h1>
|
99 |
<div style='font-size: 1.1em; color: #6d4c41; margin-bottom: 1em;'>
|
100 |
+
Explore insights from Paul Graham's essay using semantic search powered by <strong>LlamaIndex</strong> + <strong>Pinecone</strong>.
|
101 |
</div>
|
102 |
</div>
|
103 |
""")
|
104 |
+
|
105 |
with gr.Accordion("βΉοΈ What is Pinecone Vector Indexing?", open=False):
|
106 |
+
gr.Markdown("""
|
107 |
+
**Pinecone** is a vector database that stores document embeddings (numeric representations of meaning). When you ask a question, it's converted into a vector and compared against stored vectors to find the most relevant answers β even if they don't match word-for-word.
|
108 |
+
""")
|
109 |
+
|
110 |
gr.Markdown("### π Ask your question below:")
|
111 |
+
|
112 |
with gr.Group():
|
113 |
with gr.Row():
|
114 |
user_input = gr.Textbox(
|
|
|
116 |
label="Your Question",
|
117 |
lines=2
|
118 |
)
|
119 |
+
|
120 |
with gr.Row():
|
121 |
output = gr.Textbox(label="Answer", lines=6)
|
122 |
+
|
123 |
with gr.Row():
|
124 |
submit_btn = gr.Button("π Search Essay")
|
125 |
clear_btn = gr.Button("π§Ή Clear")
|
126 |
+
|
127 |
submit_btn.click(fn=ask_question, inputs=user_input, outputs=output)
|
128 |
clear_btn.click(fn=lambda: ("", ""), inputs=None, outputs=[user_input, output])
|
129 |
|
130 |
+
demo.launch()
|