Spaces:
Paused
Paused
File size: 7,243 Bytes
ca41ad4 ded489b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
# import os
import torch
import resnet
import numpy as np
import tensorflow as tf
# import nibabel as nib
import SimpleITK as sitk
import segmentation_models_3D as sm
from torch import nn
# from ttictoc import tic,toc
from skimage import morphology
from keras import backend as K
from scipy import ndimage as ndi
from keras.models import load_model
from patchify import patchify, unpatchify
# from matplotlib import pyplot as plt
# from matplotlib.widgets import Slider
# Funci贸n que retorna modelo 3D U-Net para extracci贸n de cerebro
def import_3d_unet(path_3d_unet):
# M茅tricas de desempe帽o
def dice_coefficient(y_true, y_pred):
smoothing_factor = 1
flat_y_true = K.flatten(y_true)
flat_y_pred = K.flatten(y_pred)
return (2. * K.sum(flat_y_true * flat_y_pred) + smoothing_factor) / (K.sum(flat_y_true) + K.sum(flat_y_pred) + smoothing_factor)
# Cargar modelo preentrenado
model = load_model(path_3d_unet, custom_objects={'dice_coefficient':dice_coefficient, 'iou_score':sm.metrics.IOUScore(threshold=0.5)})
return model
# Funci贸n que caraga imagen en formato nifti, aplica filtro N4 y normaliza imagen
def load_img(path):
# Lectura de MRI T1 formato nifti
inputImage = sitk.ReadImage(path, sitk.sitkFloat32)
return inputImage, sitk.GetArrayFromImage(inputImage).astype(np.float32)
# Funci贸n que remueve
def brain_stripping(inputImage, model_unet):
"""----------------------Preprocesamiento imagen MRI-----------------------"""
image = inputImage
# N4 Bias Field Correction
maskImage = sitk.OtsuThreshold(inputImage, 0, 1, 200)
corrector = sitk.N4BiasFieldCorrectionImageFilter()
corrected_image = corrector.Execute(image, maskImage)
log_bias_field = corrector.GetLogBiasFieldAsImage(inputImage)
corrected_image_full_resolution = inputImage / sitk.Exp(log_bias_field)
#Normalizaci贸n
image_normalized = sitk.GetArrayFromImage(corrected_image_full_resolution)
image_normalized = (image_normalized-np.min(image_normalized))/(np.max(image_normalized)-np.min(image_normalized))
image_normalized = image_normalized.astype(np.float32)
# Redimenci贸n
mri_image = np.transpose(image_normalized)
mri_image = np.append(mri_image, np.zeros((192-mri_image.shape[0],256,256,)), axis=0)
# Rotaci贸n
mri_image = mri_image.astype(np.float32)
mri_image = np.rot90(mri_image, axes=(1,2))
# Volume sampling
mri_patches = patchify(mri_image, (64, 64, 64), step=64)
"""--------------------Predicci贸n de m谩scara de cerebro--------------------"""
# M谩scara de cerebro para cada vol煤men
mask_patches = []
for i in range(mri_patches.shape[0]):
for j in range(mri_patches.shape[1]):
for k in range(mri_patches.shape[2]):
single_patch = np.expand_dims(mri_patches[i,j,k,:,:,:], axis=0)
single_patch_prediction = model_unet.predict(single_patch)
single_patch_prediction_th = (single_patch_prediction[0,:,:,:,0] > 0.5).astype(np.uint8)
mask_patches.append(single_patch_prediction_th)
# Conversi贸n a numpy array
predicted_patches = np.array(mask_patches)
# Reshape para proceso de reconstrucci贸n
predicted_patches_reshaped = np.reshape(predicted_patches,
(mri_patches.shape[0], mri_patches.shape[1], mri_patches.shape[2],
mri_patches.shape[3], mri_patches.shape[4], mri_patches.shape[5]) )
# Reconstrucci贸n m谩scara
reconstructed_mask = unpatchify(predicted_patches_reshaped, mri_image.shape)
# Suavizado m谩scara
corrected_mask = ndi.binary_closing(reconstructed_mask, structure=morphology.ball(2)).astype(np.uint8)
# Eliminaci贸n de volumenes ruido
no_noise_mask = corrected_mask.copy()
mask_labeled = morphology.label(corrected_mask, background=0, connectivity=3)
label_count = np.unique(mask_labeled, return_counts=True)
brain_label = np.argmax(label_count[1][1:]) + 1
no_noise_mask[np.where(mask_labeled != brain_label)] = 0
# Elimicaci贸n huecos y hendiduras
filled_mask = ndi.binary_closing(no_noise_mask, structure=morphology.ball(12)).astype(np.uint8)
"""-------------------------Extracci贸n de cerebro--------------------------"""
# Aplicar m谩scara a imagen mri
mri_brain = np.multiply(mri_image,filled_mask)
return mri_brain
# Funci贸n que retorna modelo MedNet
def create_mednet(weight_path, device_ids):
# Clase para agregar capa totalmente conectada
class simci_net(nn.Module):
def __init__(self):
super(simci_net, self).__init__()
self.pretrained_model = resnet.resnet50(sample_input_D=192, sample_input_H=256, sample_input_W=256, num_seg_classes=2, no_cuda = False)
self.pretrained_model.conv_seg = nn.Sequential(nn.AdaptiveMaxPool3d(output_size=(1, 1, 1)),
nn.Flatten(start_dim=1))
def forward(self, x):
x = self.pretrained_model(x)
return x
# Path con pesos preentrenados
weight_path = weight_path
# Lista de GPUs para utilizar
device_ids = device_ids
# Generar red
simci_model = simci_net()
# Distribuir en varias GPUs
simci_model = torch.nn.DataParallel(simci_model, device_ids = device_ids)
simci_model.to(f'cuda:{simci_model.device_ids[0]}')
# Diccionario state
net_dict = simci_model.state_dict()
# Cargar pesos
weight = torch.load(weight_path, map_location=torch.device(f'cuda:{simci_model.device_ids[0]}'))
# Transferencia de aprendizaje
pretrain_dict = {}
for k, v in weight['state_dict'].items():
if k.replace("module.", "module.pretrained_model.") in net_dict.keys():
pretrain_dict[k.replace("module.", "module.pretrained_model.")] = v
# pretrain_dict = {k.replace("module.", ""): v for k, v in weight['state_dict'].items() if k.replace("module.", "") in net_dict.keys()}
net_dict.update(pretrain_dict)
simci_model.load_state_dict(net_dict)
# Bloqueo de parametros mednet
for param in simci_model.module.pretrained_model.parameters():
param.requires_grad = False
simci_model.eval() # Modelo en modo evaluaci贸n
return simci_model
# Funci贸n que extrae caracter铆sticas de cerebro
def get_features(brain, mednet_model):
with torch.no_grad():
# Convertir a tensor
data = torch.from_numpy(np.expand_dims(np.expand_dims(brain,axis=0), axis=0))
# Enviar imagen a GPU
data = data.to(f'cuda:{mednet_model.device_ids[0]}')
# Extraer Caracter铆sticas
features = mednet_model(data) # Forward
features = features.cpu().numpy()
torch.cuda.empty_cache()
return features
# Classify image
def get_prediction(features, scores, svm_model, dl_model):
prediction = svm_model.predict(features)
# x = np.concatenate((scores, prediction))
# prob = dl_model.predict(x)
return prediction
|