Spaces:
Paused
Paused
Commit
路
ca41ad4
1
Parent(s):
f9cd822
initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import utils
|
2 |
+
import gradio as gr
|
3 |
+
import tensorflow as tf
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from ttictoc import tic,toc
|
6 |
+
|
7 |
+
# '''--------------------------- Preprocesamiento ----------------------------'''
|
8 |
+
# tic()
|
9 |
+
# 3D U-Net
|
10 |
+
path_3d_unet = 'F:/Desktop/Universidad/Semestres/NovenoSemestre/Proyecto_de_Grado/Codigo/3D_U-Net/outputs/checkpoints/model.49-0.97.h5'
|
11 |
+
|
12 |
+
with tf.device("cpu:0"):
|
13 |
+
model_unet = utils.import_3d_unet(path_3d_unet)
|
14 |
+
|
15 |
+
# # Cargar imagen
|
16 |
+
# img = utils.load_img('F:/Downloads/ADNI_002_S_0295_MR_MP-RAGE__br_raw_20070525135721811_1_S32678_I55275.nii')
|
17 |
+
|
18 |
+
# # Extraer cerebro
|
19 |
+
# with tf.device("cpu:0"):
|
20 |
+
# brain = utils.brain_stripping(img, model_unet)
|
21 |
+
# print(toc())
|
22 |
+
|
23 |
+
# '''---------------------------- Procesamiento ------------------------------'''
|
24 |
+
# # Med net
|
25 |
+
# weight_path = 'F:/Desktop/Universidad/Semestres/NovenoSemestre/Proyecto_de_Grado/Codigo/Procesamiento/mednet_weights/pretrain/resnet_50_23dataset.pth'
|
26 |
+
# device_ids = [0]
|
27 |
+
# mednet = utils.create_mednet(weight_path, device_ids)
|
28 |
+
|
29 |
+
# # Extraer caracter铆sticas
|
30 |
+
# features = utils.get_features(brain, mednet)
|
31 |
+
|
32 |
+
def load_img(file):
|
33 |
+
sitk, array = utils.load_img(file.name)
|
34 |
+
return sitk, array
|
35 |
+
|
36 |
+
def show_img(img, mri_slice):
|
37 |
+
fig = plt.figure()
|
38 |
+
plt.imshow(img[:,:,mri_slice], cmap='gray')
|
39 |
+
|
40 |
+
return fig, gr.update(visible=True)
|
41 |
+
|
42 |
+
def show_brain(brain, brain_slice):
|
43 |
+
fig = plt.figure()
|
44 |
+
plt.imshow(brain[brain_slice,:,:], cmap='gray')
|
45 |
+
|
46 |
+
return fig, gr.update(visible=True)
|
47 |
+
|
48 |
+
def process_img(img, brain_slice):
|
49 |
+
with tf.device("cpu:0"):
|
50 |
+
brain = utils.brain_stripping(img, model_unet)
|
51 |
+
|
52 |
+
fig, update = show_brain(brain, brain_slice)
|
53 |
+
|
54 |
+
return brain, fig, update
|
55 |
+
|
56 |
+
def clear():
|
57 |
+
return gr.File.update(value=None), gr.Plot.update(value=None), gr.update(visible=False)
|
58 |
+
|
59 |
+
# gr.Textbox.update(placeholder='Ingrese nombre del paciente'), gr.Number.update(value=0),
|
60 |
+
|
61 |
+
# demo = gr.Interface(fn=load_img,
|
62 |
+
# inputs=gr.File(file_count="single", file_type=[".nii"]),
|
63 |
+
# outputs=gr.Plot()
|
64 |
+
# # outputs='text'
|
65 |
+
# )
|
66 |
+
|
67 |
+
with gr.Blocks() as demo:
|
68 |
+
with gr.Row():
|
69 |
+
gr.Markdown("""
|
70 |
+
# SIMCI
|
71 |
+
Interfaz de SIMCI
|
72 |
+
""")
|
73 |
+
|
74 |
+
# Inputs
|
75 |
+
with gr.Row():
|
76 |
+
with gr.Column(scale=1):
|
77 |
+
# Objeto para subir archivo nifti
|
78 |
+
input_name = gr.Textbox(placeholder='Ingrese nombre del paciente', label='Nombre')
|
79 |
+
input_age = gr.Number(label='Edad')
|
80 |
+
|
81 |
+
|
82 |
+
input_file = gr.File(file_count="single", file_type=[".nii"], label="Archivo Imagen MRI")
|
83 |
+
|
84 |
+
with gr.Row():
|
85 |
+
# Bot贸n para cargar imagen
|
86 |
+
load_img_button = gr.Button(value="Load")
|
87 |
+
|
88 |
+
# Bot贸n para borrar
|
89 |
+
clear_button = gr.Button(value="Clear")
|
90 |
+
|
91 |
+
# Bot贸n para procesar imagen
|
92 |
+
process_button = gr.Button(value="Procesar")
|
93 |
+
|
94 |
+
# Outputs
|
95 |
+
with gr.Column(scale=1):
|
96 |
+
# Plot para im谩gen original
|
97 |
+
plot_img_original = gr.Plot(label="Imagen MRI original")
|
98 |
+
|
99 |
+
# Slider para im谩gen original
|
100 |
+
mri_slider = gr.Slider(minimum=0,
|
101 |
+
maximum=166,
|
102 |
+
value=100,
|
103 |
+
step=1,
|
104 |
+
label="MRI Slice",
|
105 |
+
visible=False)
|
106 |
+
|
107 |
+
# Plot para im谩gen procesada
|
108 |
+
plot_brain = gr.Plot(label="Imagen MRI procesada")
|
109 |
+
|
110 |
+
# Slider para im谩gen procesada
|
111 |
+
brain_slider = gr.Slider(minimum=0,
|
112 |
+
maximum=192,
|
113 |
+
value=100,
|
114 |
+
step=1,
|
115 |
+
label="MRI Slice",
|
116 |
+
visible=False)
|
117 |
+
|
118 |
+
# componentes =
|
119 |
+
|
120 |
+
# Variables
|
121 |
+
original_input_sitk = gr.State()
|
122 |
+
original_input_img = gr.State()
|
123 |
+
brain_img = gr.State()
|
124 |
+
|
125 |
+
# Cambios
|
126 |
+
# Cargar imagen nueva
|
127 |
+
input_file.change(load_img,
|
128 |
+
input_file,
|
129 |
+
[original_input_sitk, original_input_img])
|
130 |
+
|
131 |
+
# Mostrar imagen nueva
|
132 |
+
load_img_button.click(show_img,
|
133 |
+
[original_input_img, mri_slider],
|
134 |
+
[plot_img_original, mri_slider])
|
135 |
+
|
136 |
+
# Limpiar campos
|
137 |
+
clear_button.click(fn=clear,
|
138 |
+
outputs=[input_file, plot_img_original, mri_slider])
|
139 |
+
|
140 |
+
# Actualizar imagen original
|
141 |
+
mri_slider.change(show_img,
|
142 |
+
[original_input_img, mri_slider],
|
143 |
+
[plot_img_original,mri_slider])
|
144 |
+
|
145 |
+
# Procesar imagen
|
146 |
+
process_button.click(fn=process_img,
|
147 |
+
inputs=[original_input_sitk, brain_slider],
|
148 |
+
outputs=[brain_img,plot_brain,brain_slider])
|
149 |
+
|
150 |
+
# Actualizar imagen procesada
|
151 |
+
brain_slider.change(show_brain,
|
152 |
+
[brain_img, brain_slider],
|
153 |
+
[plot_brain,brain_slider])
|
154 |
+
|
155 |
+
|
156 |
+
if __name__ == "__main__":
|
157 |
+
demo.launch()
|
158 |
+
|
159 |
+
# # Visualizaci贸n resultados
|
160 |
+
# mri_slice = 100
|
161 |
+
|
162 |
+
# # Plot Comparaci贸n m谩scaras
|
163 |
+
# fig, axs = plt.subplots(1,2)
|
164 |
+
# fig.subplots_adjust(bottom=0.15)
|
165 |
+
# fig.suptitle('Comparaci贸n M谩scaras Obtenidas')
|
166 |
+
|
167 |
+
# axs[0].set_title('MRI original')
|
168 |
+
# axs[0].imshow(img[mri_slice,:,:],cmap='gray')
|
169 |
+
|
170 |
+
# axs[1].set_title('Cerebro extraido con 3D U-Net')
|
171 |
+
# axs[1].imshow(brain[mri_slice,:,:],cmap='gray')
|
172 |
+
|
173 |
+
|
174 |
+
# # Slider para cambiar slice
|
175 |
+
# ax_slider = plt.axes([0.15, 0.05, 0.75, 0.03])
|
176 |
+
# mri_slice_slider = Slider(ax_slider, 'Slice', 0, 192, 100, valstep=1)
|
177 |
+
|
178 |
+
# def update(val):
|
179 |
+
# mri_slice = mri_slice_slider.val
|
180 |
+
|
181 |
+
# axs[0].imshow(img[:,:,mri_slice],cmap='gray')
|
182 |
+
# axs[1].imshow(brain[mri_slice,:,:],cmap='gray')
|
183 |
+
|
184 |
+
# # Actualizar plot comparaci贸n m谩scaras
|
185 |
+
# mri_slice_slider.on_changed(update)
|
resnet.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
import math
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
'ResNet', 'resnet10', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
|
10 |
+
'resnet152', 'resnet200'
|
11 |
+
]
|
12 |
+
|
13 |
+
|
14 |
+
def conv3x3x3(in_planes, out_planes, stride=1, dilation=1):
|
15 |
+
# 3x3x3 convolution with padding
|
16 |
+
return nn.Conv3d(
|
17 |
+
in_planes,
|
18 |
+
out_planes,
|
19 |
+
kernel_size=3,
|
20 |
+
dilation=dilation,
|
21 |
+
stride=stride,
|
22 |
+
padding=dilation,
|
23 |
+
bias=False)
|
24 |
+
|
25 |
+
|
26 |
+
def downsample_basic_block(x, planes, stride, no_cuda=False):
|
27 |
+
out = F.avg_pool3d(x, kernel_size=1, stride=stride)
|
28 |
+
zero_pads = torch.Tensor(
|
29 |
+
out.size(0), planes - out.size(1), out.size(2), out.size(3),
|
30 |
+
out.size(4)).zero_()
|
31 |
+
if not no_cuda:
|
32 |
+
if isinstance(out.data, torch.cuda.FloatTensor):
|
33 |
+
zero_pads = zero_pads.cuda()
|
34 |
+
|
35 |
+
out = Variable(torch.cat([out.data, zero_pads], dim=1))
|
36 |
+
|
37 |
+
return out
|
38 |
+
|
39 |
+
|
40 |
+
class BasicBlock(nn.Module):
|
41 |
+
expansion = 1
|
42 |
+
|
43 |
+
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None):
|
44 |
+
super(BasicBlock, self).__init__()
|
45 |
+
self.conv1 = conv3x3x3(inplanes, planes, stride=stride, dilation=dilation)
|
46 |
+
self.bn1 = nn.BatchNorm3d(planes)
|
47 |
+
self.relu = nn.ReLU(inplace=True)
|
48 |
+
self.conv2 = conv3x3x3(planes, planes, dilation=dilation)
|
49 |
+
self.bn2 = nn.BatchNorm3d(planes)
|
50 |
+
self.downsample = downsample
|
51 |
+
self.stride = stride
|
52 |
+
self.dilation = dilation
|
53 |
+
|
54 |
+
def forward(self, x):
|
55 |
+
residual = x
|
56 |
+
|
57 |
+
out = self.conv1(x)
|
58 |
+
out = self.bn1(out)
|
59 |
+
out = self.relu(out)
|
60 |
+
out = self.conv2(out)
|
61 |
+
out = self.bn2(out)
|
62 |
+
|
63 |
+
if self.downsample is not None:
|
64 |
+
residual = self.downsample(x)
|
65 |
+
|
66 |
+
out += residual
|
67 |
+
out = self.relu(out)
|
68 |
+
|
69 |
+
return out
|
70 |
+
|
71 |
+
|
72 |
+
class Bottleneck(nn.Module):
|
73 |
+
expansion = 4
|
74 |
+
|
75 |
+
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None):
|
76 |
+
super(Bottleneck, self).__init__()
|
77 |
+
self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=1, bias=False)
|
78 |
+
self.bn1 = nn.BatchNorm3d(planes)
|
79 |
+
self.conv2 = nn.Conv3d(
|
80 |
+
planes, planes, kernel_size=3, stride=stride, dilation=dilation, padding=dilation, bias=False)
|
81 |
+
self.bn2 = nn.BatchNorm3d(planes)
|
82 |
+
self.conv3 = nn.Conv3d(planes, planes * 4, kernel_size=1, bias=False)
|
83 |
+
self.bn3 = nn.BatchNorm3d(planes * 4)
|
84 |
+
self.relu = nn.ReLU(inplace=True)
|
85 |
+
self.downsample = downsample
|
86 |
+
self.stride = stride
|
87 |
+
self.dilation = dilation
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
residual = x
|
91 |
+
|
92 |
+
out = self.conv1(x)
|
93 |
+
out = self.bn1(out)
|
94 |
+
out = self.relu(out)
|
95 |
+
|
96 |
+
out = self.conv2(out)
|
97 |
+
out = self.bn2(out)
|
98 |
+
out = self.relu(out)
|
99 |
+
|
100 |
+
out = self.conv3(out)
|
101 |
+
out = self.bn3(out)
|
102 |
+
|
103 |
+
if self.downsample is not None:
|
104 |
+
residual = self.downsample(x)
|
105 |
+
|
106 |
+
out += residual
|
107 |
+
out = self.relu(out)
|
108 |
+
|
109 |
+
return out
|
110 |
+
|
111 |
+
|
112 |
+
class ResNet(nn.Module):
|
113 |
+
|
114 |
+
def __init__(self,
|
115 |
+
block,
|
116 |
+
layers,
|
117 |
+
sample_input_D,
|
118 |
+
sample_input_H,
|
119 |
+
sample_input_W,
|
120 |
+
num_seg_classes,
|
121 |
+
shortcut_type='B',
|
122 |
+
no_cuda = False):
|
123 |
+
self.inplanes = 64
|
124 |
+
self.no_cuda = no_cuda
|
125 |
+
super(ResNet, self).__init__()
|
126 |
+
self.conv1 = nn.Conv3d(
|
127 |
+
1,
|
128 |
+
64,
|
129 |
+
kernel_size=7,
|
130 |
+
stride=(2, 2, 2),
|
131 |
+
padding=(3, 3, 3),
|
132 |
+
bias=False)
|
133 |
+
|
134 |
+
self.bn1 = nn.BatchNorm3d(64)
|
135 |
+
self.relu = nn.ReLU(inplace=True)
|
136 |
+
self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
|
137 |
+
self.layer1 = self._make_layer(block, 64, layers[0], shortcut_type)
|
138 |
+
self.layer2 = self._make_layer(
|
139 |
+
block, 128, layers[1], shortcut_type, stride=2)
|
140 |
+
self.layer3 = self._make_layer(
|
141 |
+
block, 256, layers[2], shortcut_type, stride=1, dilation=2)
|
142 |
+
self.layer4 = self._make_layer(
|
143 |
+
block, 512, layers[3], shortcut_type, stride=1, dilation=4)
|
144 |
+
|
145 |
+
self.conv_seg = nn.Sequential(
|
146 |
+
nn.ConvTranspose3d(
|
147 |
+
512 * block.expansion,
|
148 |
+
32,
|
149 |
+
2,
|
150 |
+
stride=2
|
151 |
+
),
|
152 |
+
nn.BatchNorm3d(32),
|
153 |
+
nn.ReLU(inplace=True),
|
154 |
+
nn.Conv3d(
|
155 |
+
32,
|
156 |
+
32,
|
157 |
+
kernel_size=3,
|
158 |
+
stride=(1, 1, 1),
|
159 |
+
padding=(1, 1, 1),
|
160 |
+
bias=False),
|
161 |
+
nn.BatchNorm3d(32),
|
162 |
+
nn.ReLU(inplace=True),
|
163 |
+
nn.Conv3d(
|
164 |
+
32,
|
165 |
+
num_seg_classes,
|
166 |
+
kernel_size=1,
|
167 |
+
stride=(1, 1, 1),
|
168 |
+
bias=False)
|
169 |
+
)
|
170 |
+
|
171 |
+
for m in self.modules():
|
172 |
+
if isinstance(m, nn.Conv3d):
|
173 |
+
m.weight = nn.init.kaiming_normal_(m.weight, mode='fan_out')
|
174 |
+
elif isinstance(m, nn.BatchNorm3d):
|
175 |
+
m.weight.data.fill_(1)
|
176 |
+
m.bias.data.zero_()
|
177 |
+
|
178 |
+
def _make_layer(self, block, planes, blocks, shortcut_type, stride=1, dilation=1):
|
179 |
+
downsample = None
|
180 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
181 |
+
if shortcut_type == 'A':
|
182 |
+
downsample = partial(
|
183 |
+
downsample_basic_block,
|
184 |
+
planes=planes * block.expansion,
|
185 |
+
stride=stride,
|
186 |
+
no_cuda=self.no_cuda)
|
187 |
+
else:
|
188 |
+
downsample = nn.Sequential(
|
189 |
+
nn.Conv3d(
|
190 |
+
self.inplanes,
|
191 |
+
planes * block.expansion,
|
192 |
+
kernel_size=1,
|
193 |
+
stride=stride,
|
194 |
+
bias=False), nn.BatchNorm3d(planes * block.expansion))
|
195 |
+
|
196 |
+
layers = []
|
197 |
+
layers.append(block(self.inplanes, planes, stride=stride, dilation=dilation, downsample=downsample))
|
198 |
+
self.inplanes = planes * block.expansion
|
199 |
+
for i in range(1, blocks):
|
200 |
+
layers.append(block(self.inplanes, planes, dilation=dilation))
|
201 |
+
|
202 |
+
return nn.Sequential(*layers)
|
203 |
+
|
204 |
+
def forward(self, x):
|
205 |
+
x = self.conv1(x)
|
206 |
+
x = self.bn1(x)
|
207 |
+
x = self.relu(x)
|
208 |
+
x = self.maxpool(x)
|
209 |
+
x = self.layer1(x)
|
210 |
+
x = self.layer2(x)
|
211 |
+
x = self.layer3(x)
|
212 |
+
x = self.layer4(x)
|
213 |
+
x = self.conv_seg(x)
|
214 |
+
|
215 |
+
return x
|
216 |
+
|
217 |
+
def resnet10(**kwargs):
|
218 |
+
"""Constructs a ResNet-18 model.
|
219 |
+
"""
|
220 |
+
model = ResNet(BasicBlock, [1, 1, 1, 1], **kwargs)
|
221 |
+
return model
|
222 |
+
|
223 |
+
|
224 |
+
def resnet18(**kwargs):
|
225 |
+
"""Constructs a ResNet-18 model.
|
226 |
+
"""
|
227 |
+
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
|
228 |
+
return model
|
229 |
+
|
230 |
+
|
231 |
+
def resnet34(**kwargs):
|
232 |
+
"""Constructs a ResNet-34 model.
|
233 |
+
"""
|
234 |
+
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
|
235 |
+
return model
|
236 |
+
|
237 |
+
|
238 |
+
def resnet50(**kwargs):
|
239 |
+
"""Constructs a ResNet-50 model.
|
240 |
+
"""
|
241 |
+
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
|
242 |
+
return model
|
243 |
+
|
244 |
+
|
245 |
+
def resnet101(**kwargs):
|
246 |
+
"""Constructs a ResNet-101 model.
|
247 |
+
"""
|
248 |
+
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
|
249 |
+
return model
|
250 |
+
|
251 |
+
|
252 |
+
def resnet152(**kwargs):
|
253 |
+
"""Constructs a ResNet-101 model.
|
254 |
+
"""
|
255 |
+
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
|
256 |
+
return model
|
257 |
+
|
258 |
+
|
259 |
+
def resnet200(**kwargs):
|
260 |
+
"""Constructs a ResNet-101 model.
|
261 |
+
"""
|
262 |
+
model = ResNet(Bottleneck, [3, 24, 36, 3], **kwargs)
|
263 |
+
return model
|
utils.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import os
|
2 |
+
import torch
|
3 |
+
import resnet
|
4 |
+
import numpy as np
|
5 |
+
import tensorflow as tf
|
6 |
+
# import nibabel as nib
|
7 |
+
import SimpleITK as sitk
|
8 |
+
import segmentation_models_3D as sm
|
9 |
+
from torch import nn
|
10 |
+
# from ttictoc import tic,toc
|
11 |
+
from skimage import morphology
|
12 |
+
from keras import backend as K
|
13 |
+
from scipy import ndimage as ndi
|
14 |
+
from keras.models import load_model
|
15 |
+
from patchify import patchify, unpatchify
|
16 |
+
|
17 |
+
# from matplotlib import pyplot as plt
|
18 |
+
# from matplotlib.widgets import Slider
|
19 |
+
|
20 |
+
# Funci贸n que retorna modelo 3D U-Net para extracci贸n de cerebro
|
21 |
+
def import_3d_unet(path_3d_unet):
|
22 |
+
# M茅tricas de desempe帽o
|
23 |
+
def dice_coefficient(y_true, y_pred):
|
24 |
+
smoothing_factor = 1
|
25 |
+
flat_y_true = K.flatten(y_true)
|
26 |
+
flat_y_pred = K.flatten(y_pred)
|
27 |
+
return (2. * K.sum(flat_y_true * flat_y_pred) + smoothing_factor) / (K.sum(flat_y_true) + K.sum(flat_y_pred) + smoothing_factor)
|
28 |
+
|
29 |
+
# Cargar modelo preentrenado
|
30 |
+
# with tf.device('/cpu:0'):
|
31 |
+
model = load_model(path_3d_unet, custom_objects={'dice_coefficient':dice_coefficient, 'iou_score':sm.metrics.IOUScore(threshold=0.5)})
|
32 |
+
return model
|
33 |
+
|
34 |
+
|
35 |
+
# Funci贸n que caraga imagen en formato nifti, aplica filtro N4 y normaliza imagen
|
36 |
+
def load_img(path):
|
37 |
+
# Lectura de MRI T1 formato nifti
|
38 |
+
inputImage = sitk.ReadImage(path, sitk.sitkFloat32)
|
39 |
+
|
40 |
+
return inputImage, sitk.GetArrayFromImage(inputImage).astype(np.float32)
|
41 |
+
|
42 |
+
# Funci贸n que remueve
|
43 |
+
def brain_stripping(inputImage, model_unet):
|
44 |
+
"""----------------------Preprocesamiento imagen MRI-----------------------"""
|
45 |
+
image = inputImage
|
46 |
+
|
47 |
+
# N4 Bias Field Correction
|
48 |
+
maskImage = sitk.OtsuThreshold(inputImage, 0, 1, 200)
|
49 |
+
corrector = sitk.N4BiasFieldCorrectionImageFilter()
|
50 |
+
corrected_image = corrector.Execute(image, maskImage)
|
51 |
+
log_bias_field = corrector.GetLogBiasFieldAsImage(inputImage)
|
52 |
+
corrected_image_full_resolution = inputImage / sitk.Exp(log_bias_field)
|
53 |
+
|
54 |
+
#Normalizaci贸n
|
55 |
+
image_normalized = sitk.GetArrayFromImage(corrected_image_full_resolution)
|
56 |
+
image_normalized = (image_normalized-np.min(image_normalized))/(np.max(image_normalized)-np.min(image_normalized))
|
57 |
+
image_normalized = image_normalized.astype(np.float32)
|
58 |
+
|
59 |
+
# Redimenci贸n
|
60 |
+
mri_image = np.transpose(image_normalized)
|
61 |
+
mri_image = np.append(mri_image, np.zeros((192-mri_image.shape[0],256,256,)), axis=0)
|
62 |
+
|
63 |
+
# Rotaci贸n
|
64 |
+
mri_image = mri_image.astype(np.float32)
|
65 |
+
mri_image = np.rot90(mri_image, axes=(1,2))
|
66 |
+
|
67 |
+
# Volume sampling
|
68 |
+
mri_patches = patchify(mri_image, (64, 64, 64), step=64)
|
69 |
+
|
70 |
+
"""--------------------Predicci贸n de m谩scara de cerebro--------------------"""
|
71 |
+
# M谩scara de cerebro para cada vol煤men
|
72 |
+
mask_patches = []
|
73 |
+
|
74 |
+
for i in range(mri_patches.shape[0]):
|
75 |
+
for j in range(mri_patches.shape[1]):
|
76 |
+
for k in range(mri_patches.shape[2]):
|
77 |
+
single_patch = np.expand_dims(mri_patches[i,j,k,:,:,:], axis=0)
|
78 |
+
single_patch_prediction = model_unet.predict(single_patch)
|
79 |
+
single_patch_prediction_th = (single_patch_prediction[0,:,:,:,0] > 0.5).astype(np.uint8)
|
80 |
+
mask_patches.append(single_patch_prediction_th)
|
81 |
+
|
82 |
+
# Conversi贸n a numpy array
|
83 |
+
predicted_patches = np.array(mask_patches)
|
84 |
+
|
85 |
+
# Reshape para proceso de reconstrucci贸n
|
86 |
+
predicted_patches_reshaped = np.reshape(predicted_patches,
|
87 |
+
(mri_patches.shape[0], mri_patches.shape[1], mri_patches.shape[2],
|
88 |
+
mri_patches.shape[3], mri_patches.shape[4], mri_patches.shape[5]) )
|
89 |
+
|
90 |
+
# Reconstrucci贸n m谩scara
|
91 |
+
reconstructed_mask = unpatchify(predicted_patches_reshaped, mri_image.shape)
|
92 |
+
|
93 |
+
# Suavizado m谩scara
|
94 |
+
corrected_mask = ndi.binary_closing(reconstructed_mask, structure=morphology.ball(2)).astype(np.uint8)
|
95 |
+
|
96 |
+
# Eliminaci贸n de volumenes ruido
|
97 |
+
no_noise_mask = corrected_mask.copy()
|
98 |
+
mask_labeled = morphology.label(corrected_mask, background=0, connectivity=3)
|
99 |
+
label_count = np.unique(mask_labeled, return_counts=True)
|
100 |
+
brain_label = np.argmax(label_count[1][1:]) + 1
|
101 |
+
|
102 |
+
no_noise_mask[np.where(mask_labeled != brain_label)] = 0
|
103 |
+
|
104 |
+
# Elimicaci贸n huecos y hendiduras
|
105 |
+
filled_mask = ndi.binary_closing(no_noise_mask, structure=morphology.ball(12)).astype(np.uint8)
|
106 |
+
|
107 |
+
"""-------------------------Extracci贸n de cerebro--------------------------"""
|
108 |
+
# Aplicar m谩scara a imagen mri
|
109 |
+
mri_brain = np.multiply(mri_image,filled_mask)
|
110 |
+
|
111 |
+
return mri_brain
|
112 |
+
|
113 |
+
# Funci贸n que retorna modelo MedNet
|
114 |
+
def create_mednet(weight_path, device_ids):
|
115 |
+
# Clase para agregar capa totalmente conectada
|
116 |
+
class simci_net(nn.Module):
|
117 |
+
def __init__(self):
|
118 |
+
super(simci_net, self).__init__()
|
119 |
+
|
120 |
+
self.pretrained_model = resnet.resnet50(sample_input_D=192, sample_input_H=256, sample_input_W=256, num_seg_classes=2, no_cuda = False)
|
121 |
+
self.pretrained_model.conv_seg = nn.Sequential(nn.AdaptiveMaxPool3d(output_size=(1, 1, 1)),
|
122 |
+
nn.Flatten(start_dim=1))
|
123 |
+
|
124 |
+
|
125 |
+
def forward(self, x):
|
126 |
+
x = self.pretrained_model(x)
|
127 |
+
|
128 |
+
return x
|
129 |
+
|
130 |
+
# Path con pesos preentrenados
|
131 |
+
weight_path = weight_path
|
132 |
+
|
133 |
+
# Lista de GPUs para utilizar
|
134 |
+
device_ids = device_ids
|
135 |
+
|
136 |
+
# Generar red
|
137 |
+
simci_model = simci_net()
|
138 |
+
|
139 |
+
# Distribuir en varias GPUs
|
140 |
+
simci_model = torch.nn.DataParallel(simci_model, device_ids = device_ids)
|
141 |
+
simci_model.to(f'cuda:{simci_model.device_ids[0]}')
|
142 |
+
|
143 |
+
# Diccionario state
|
144 |
+
net_dict = simci_model.state_dict()
|
145 |
+
|
146 |
+
# Cargar pesos
|
147 |
+
weight = torch.load(weight_path, map_location=torch.device(f'cuda:{simci_model.device_ids[0]}'))
|
148 |
+
|
149 |
+
# Transferencia de aprendizaje
|
150 |
+
pretrain_dict = {}
|
151 |
+
|
152 |
+
for k, v in weight['state_dict'].items():
|
153 |
+
if k.replace("module.", "module.pretrained_model.") in net_dict.keys():
|
154 |
+
pretrain_dict[k.replace("module.", "module.pretrained_model.")] = v
|
155 |
+
|
156 |
+
# pretrain_dict = {k.replace("module.", ""): v for k, v in weight['state_dict'].items() if k.replace("module.", "") in net_dict.keys()}
|
157 |
+
net_dict.update(pretrain_dict)
|
158 |
+
simci_model.load_state_dict(net_dict)
|
159 |
+
|
160 |
+
# Bloqueo de parametros mednet
|
161 |
+
for param in simci_model.module.pretrained_model.parameters():
|
162 |
+
param.requires_grad = False
|
163 |
+
|
164 |
+
simci_model.eval() # Modelo en modo evaluaci贸n
|
165 |
+
|
166 |
+
return simci_model
|
167 |
+
|
168 |
+
# Funci贸n que extrae caracter铆sticas de cerebro
|
169 |
+
def get_features(brain, mednet_model):
|
170 |
+
with torch.no_grad():
|
171 |
+
# Convertir a tensor
|
172 |
+
data = torch.from_numpy(np.expand_dims(np.expand_dims(brain,axis=0), axis=0))
|
173 |
+
|
174 |
+
# Enviar imagen a GPU
|
175 |
+
data = data.to(f'cuda:{mednet_model.device_ids[0]}')
|
176 |
+
|
177 |
+
# Extraer Caracter铆sticas
|
178 |
+
features = mednet_model(data) # Forward
|
179 |
+
features = features.cpu().numpy()
|
180 |
+
|
181 |
+
torch.cuda.empty_cache()
|
182 |
+
return features
|