SARM-Demo / app.py
Schrieffer2sy's picture
init
05a9ebf
raw
history blame
3.66 kB
import gradio as gr
import torch
from transformers import AutoTokenizer
from sarm_llama import LlamaSARM
# --- 1. 加载模型和Tokenizer ---
# 这一步会自动从Hugging Face Hub下载你的模型文件
# 确保你的模型仓库是公开的
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_ID = "schrieffer/SARM-4B"
print(f"Loading model: {MODEL_ID} on {DEVICE}...")
# 加载模型时必须信任远程代码,因为SARM有自定义架构
model = LlamaSARM.from_pretrained(
MODEL_ID,
sae_hidden_state_source_layer=16,
sae_latent_size=65536,
sae_k=192,
device_map=DEVICE,
trust_remote_code=True,
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True)
print("Model loaded successfully!")
# --- 2. 定义推理函数 ---
# 这个函数会被Gradio调用
def get_reward_score(prompt: str, response: str) -> float:
"""
接收prompt和response,返回SARM模型计算出的奖励分数。
"""
if not prompt or not response:
return 0.0
try:
# 使用与模型训练时相同的聊天模板
messages = [{"role": "user", "content": prompt}, {"role": "assistant", "content": response}]
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to(DEVICE)
with torch.no_grad():
score = model(input_ids).logits.item()
return round(score, 4)
except Exception as e:
print(f"Error: {e}")
# 在界面上返回一个错误提示可能更好,但这里我们简单返回0
return 0.0
# --- 3. 创建并启动Gradio界面 ---
# 使用gr.Blocks()可以获得更灵活的布局
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# SARM-4B: Interpretable Reward Model Demo
This is an interactive demo for the SARM-4B model, an interpretable reward model enhanced by a Sparse Autoencoder.
Enter a prompt (question) and a corresponding response below to get a reward score. A higher score indicates a better quality response according to the model.
For more details, check out our [Tech Report](https://arxiv.org/abs/submit/6699218) and [Model Card](https://huggingface.co/schrieffer/SARM-4B).
"""
)
with gr.Row():
prompt_input = gr.Textbox(lines=3, label="Prompt / Question", placeholder="e.g., Can you explain the theory of relativity in simple terms?")
response_input = gr.Textbox(lines=5, label="Response to be Evaluated", placeholder="e.g., Of course! Albert Einstein's theory of relativity...")
calculate_btn = gr.Button("Calculate Reward Score", variant="primary")
score_output = gr.Number(label="Reward Score", info="A higher score is better.")
# 定义按钮点击时的行为
calculate_btn.click(
fn=get_reward_score,
inputs=[prompt_input, response_input],
outputs=score_output
)
gr.Examples(
examples=[
["What is the capital of France?", "The capital of France is Paris."],
["What is the capital of France?", "Berlin is a large city in Germany."],
["Write a short poem about the moon.", "Silver orb in velvet night, / Casting shadows, soft and light. / Silent watcher, distant, bright, / Guiding dreams till morning's light."],
["Write a short poem about the moon.", "The moon is a rock."]
],
inputs=[prompt_input, response_input],
outputs=score_output,
fn=get_reward_score,
cache_examples=True # 缓存示例结果,加快加载速度
)
# 启动应用
demo.launch()