import gradio as gr import torch from transformers import AutoTokenizer from sarm_llama import LlamaSARM # --- 1. 加载模型和Tokenizer --- # 这一步会自动从Hugging Face Hub下载你的模型文件 # 确保你的模型仓库是公开的 DEVICE = "cuda" if torch.cuda.is_available() else "cpu" MODEL_ID = "schrieffer/SARM-4B" print(f"Loading model: {MODEL_ID} on {DEVICE}...") # 加载模型时必须信任远程代码,因为SARM有自定义架构 model = LlamaSARM.from_pretrained( MODEL_ID, sae_hidden_state_source_layer=16, sae_latent_size=65536, sae_k=192, device_map=DEVICE, trust_remote_code=True, torch_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True) print("Model loaded successfully!") # --- 2. 定义推理函数 --- # 这个函数会被Gradio调用 def get_reward_score(prompt: str, response: str) -> float: """ 接收prompt和response,返回SARM模型计算出的奖励分数。 """ if not prompt or not response: return 0.0 try: # 使用与模型训练时相同的聊天模板 messages = [{"role": "user", "content": prompt}, {"role": "assistant", "content": response}] input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to(DEVICE) with torch.no_grad(): score = model(input_ids).logits.item() return round(score, 4) except Exception as e: print(f"Error: {e}") # 在界面上返回一个错误提示可能更好,但这里我们简单返回0 return 0.0 # --- 3. 创建并启动Gradio界面 --- # 使用gr.Blocks()可以获得更灵活的布局 with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown( """ # SARM-4B: Interpretable Reward Model Demo This is an interactive demo for the SARM-4B model, an interpretable reward model enhanced by a Sparse Autoencoder. Enter a prompt (question) and a corresponding response below to get a reward score. A higher score indicates a better quality response according to the model. For more details, check out our [Tech Report](https://arxiv.org/abs/submit/6699218) and [Model Card](https://huggingface.co/schrieffer/SARM-4B). """ ) with gr.Row(): prompt_input = gr.Textbox(lines=3, label="Prompt / Question", placeholder="e.g., Can you explain the theory of relativity in simple terms?") response_input = gr.Textbox(lines=5, label="Response to be Evaluated", placeholder="e.g., Of course! Albert Einstein's theory of relativity...") calculate_btn = gr.Button("Calculate Reward Score", variant="primary") score_output = gr.Number(label="Reward Score", info="A higher score is better.") # 定义按钮点击时的行为 calculate_btn.click( fn=get_reward_score, inputs=[prompt_input, response_input], outputs=score_output ) gr.Examples( examples=[ ["What is the capital of France?", "The capital of France is Paris."], ["What is the capital of France?", "Berlin is a large city in Germany."], ["Write a short poem about the moon.", "Silver orb in velvet night, / Casting shadows, soft and light. / Silent watcher, distant, bright, / Guiding dreams till morning's light."], ["Write a short poem about the moon.", "The moon is a rock."] ], inputs=[prompt_input, response_input], outputs=score_output, fn=get_reward_score, cache_examples=True # 缓存示例结果,加快加载速度 ) # 启动应用 demo.launch()