Helmet_Detector / app.py
SamiKhokhar's picture
Update app.py
9d89116 verified
import torch
import easyocr
import gradio as gr
from PIL import Image
import cv2
import numpy as np
import os
# Load YOLOv5 pre-trained model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # Use YOLOv5s for speed
# Initialize EasyOCR for license plate recognition
reader = easyocr.Reader(['en'])
# Directory to save images of non-helmet riders
os.makedirs("non_helmet_riders", exist_ok=True)
# Function to enhance the image for better number plate recognition
def preprocess_image_for_ocr(image):
# Convert image to grayscale
gray = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
# Apply thresholding to binarize the image (white text on black background)
_, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
return thresh
# Function to detect non-helmet riders and their license plates
def detect_non_helmet_and_plate(image):
img_np = np.array(image)
results = model(image)
# Default outputs
helmet_status = "Pass"
license_plate_text = "I can't detect image"
license_plate_image = None
# Parse YOLO results
non_helmet_detected = False
for *xyxy, conf, cls in results.xyxy[0]:
class_id = int(cls)
if class_id == 0: # Class 0 is 'person' in YOLOv5s
non_helmet_detected = True
helmet_status = "Fail"
cv2.rectangle(img_np, (int(xyxy[0]), int(xyxy[1])),
(int(xyxy[2]), int(xyxy[3])), (0, 0, 255), 2) # Red box
cv2.putText(img_np, "No Helmet",
(int(xyxy[0]), int(xyxy[1]) - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
# Save the image of the non-helmet rider
cropped_img = img_np[int(xyxy[1]):int(xyxy[3]), int(xyxy[0]):int(xyxy[2])]
rider_image_path = f"non_helmet_riders/rider_{np.random.randint(10000)}.jpg"
cv2.imwrite(rider_image_path, cropped_img)
# Detect license plate if a non-helmet rider is found
if non_helmet_detected:
plate_text = reader.readtext(preprocess_image_for_ocr(image)) # Preprocess image before passing to OCR
for detection in plate_text:
text = detection[1]
# Filter for license plate-like text
if len(text) > 5 and text.isalnum(): # Assuming plates have a minimum length and alphanumeric
license_plate_text = text
# Create the cropped image of the plate
plate_img = np.array(image)[int(detection[0][0][1]):int(detection[0][2][1]),
int(detection[0][0][0]):int(detection[0][2][0])]
license_plate_image = Image.fromarray(plate_img)
break
# Convert the processed image back to PIL for Gradio display
img_pil = Image.fromarray(img_np)
return img_pil, helmet_status, license_plate_image, license_plate_text # Returning the image, helmet status, plate image, and license plate number
# Function to capture live video frame from webcam
def capture_webcam_frame():
cap = cv2.VideoCapture(0)
ret, frame = cap.read()
cap.release()
if ret:
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
return detect_non_helmet_and_plate(img)
return None, "Error", "I can't detect image", "I can't detect image"
# Set up Gradio interface with both upload and webcam inputs
def interface_fn(image, capture_from_webcam):
if capture_from_webcam:
return capture_webcam_frame()
else:
return detect_non_helmet_and_plate(image)
# Set up Gradio interface
interface = gr.Interface(
fn=interface_fn,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Checkbox(label="Capture from Webcam") # Use Checkbox to toggle between upload and webcam
],
outputs=[
gr.Image(type="pil", label="Processed Image"), # Output: Processed Image
gr.Textbox(label="Helmet Status"), # Output: Helmet Status
gr.Image(type="pil", label="License Plate Image"), # Output: License Plate Image
gr.Textbox(label="License Plate Number") # Output: License Plate Number
],
title="Helmet and License Plate Detection",
description="Detect riders without helmets. If a rider is without a helmet, capture their image and license plate.",
)
# Launch Gradio app
interface.launch(share=True)