Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -15,10 +15,14 @@ reader = easyocr.Reader(['en'])
|
|
15 |
# Directory to save images of non-helmet riders
|
16 |
os.makedirs("non_helmet_riders", exist_ok=True)
|
17 |
|
18 |
-
# Function to
|
19 |
def preprocess_image_for_ocr(image):
|
|
|
20 |
gray = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
|
|
|
|
|
21 |
_, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
|
|
|
22 |
return thresh
|
23 |
|
24 |
# Function to detect non-helmet riders and their license plates
|
@@ -26,50 +30,81 @@ def detect_non_helmet_and_plate(image):
|
|
26 |
img_np = np.array(image)
|
27 |
results = model(image)
|
28 |
|
|
|
29 |
helmet_status = "Pass"
|
30 |
-
license_plate_text = "
|
31 |
license_plate_image = None
|
32 |
-
non_helmet_detected = False
|
33 |
|
|
|
|
|
34 |
for *xyxy, conf, cls in results.xyxy[0]:
|
35 |
class_id = int(cls)
|
36 |
-
if class_id == 0: # Class 0 is 'person'
|
37 |
non_helmet_detected = True
|
38 |
helmet_status = "Fail"
|
39 |
-
cv2.rectangle(img_np, (int(xyxy[0]), int(xyxy[1])),
|
40 |
-
(int(xyxy[2]), int(xyxy[3])), (0, 0, 255), 2)
|
41 |
-
cv2.putText(img_np, "No Helmet",
|
42 |
-
(int(xyxy[0]), int(xyxy[1]) - 10),
|
43 |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
if non_helmet_detected:
|
46 |
-
plate_text = reader.readtext(preprocess_image_for_ocr(image))
|
47 |
for detection in plate_text:
|
48 |
text = detection[1]
|
49 |
-
|
|
|
50 |
license_plate_text = text
|
|
|
|
|
|
|
|
|
|
|
51 |
break
|
52 |
|
|
|
53 |
img_pil = Image.fromarray(img_np)
|
54 |
-
return img_pil, helmet_status,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
# Gradio interface
|
57 |
-
def interface_fn(image):
|
58 |
-
|
|
|
|
|
|
|
59 |
|
|
|
60 |
interface = gr.Interface(
|
61 |
fn=interface_fn,
|
62 |
-
inputs=
|
|
|
|
|
|
|
63 |
outputs=[
|
64 |
-
gr.Image(type="pil", label="Processed Image"),
|
65 |
-
gr.Textbox(label="Helmet Status"),
|
66 |
-
gr.Image(type="pil", label="License Plate Image"),
|
67 |
-
gr.Textbox(label="License Plate Number")
|
68 |
],
|
69 |
title="Helmet and License Plate Detection",
|
70 |
-
description="Detect riders without helmets. If a rider is without a helmet, capture their image and license plate."
|
71 |
)
|
72 |
|
73 |
# Launch Gradio app
|
74 |
-
|
75 |
-
interface.launch()
|
|
|
15 |
# Directory to save images of non-helmet riders
|
16 |
os.makedirs("non_helmet_riders", exist_ok=True)
|
17 |
|
18 |
+
# Function to enhance the image for better number plate recognition
|
19 |
def preprocess_image_for_ocr(image):
|
20 |
+
# Convert image to grayscale
|
21 |
gray = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
|
22 |
+
|
23 |
+
# Apply thresholding to binarize the image (white text on black background)
|
24 |
_, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
|
25 |
+
|
26 |
return thresh
|
27 |
|
28 |
# Function to detect non-helmet riders and their license plates
|
|
|
30 |
img_np = np.array(image)
|
31 |
results = model(image)
|
32 |
|
33 |
+
# Default outputs
|
34 |
helmet_status = "Pass"
|
35 |
+
license_plate_text = "I can't detect image"
|
36 |
license_plate_image = None
|
|
|
37 |
|
38 |
+
# Parse YOLO results
|
39 |
+
non_helmet_detected = False
|
40 |
for *xyxy, conf, cls in results.xyxy[0]:
|
41 |
class_id = int(cls)
|
42 |
+
if class_id == 0: # Class 0 is 'person' in YOLOv5s
|
43 |
non_helmet_detected = True
|
44 |
helmet_status = "Fail"
|
45 |
+
cv2.rectangle(img_np, (int(xyxy[0]), int(xyxy[1])),
|
46 |
+
(int(xyxy[2]), int(xyxy[3])), (0, 0, 255), 2) # Red box
|
47 |
+
cv2.putText(img_np, "No Helmet",
|
48 |
+
(int(xyxy[0]), int(xyxy[1]) - 10),
|
49 |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
|
50 |
|
51 |
+
# Save the image of the non-helmet rider
|
52 |
+
cropped_img = img_np[int(xyxy[1]):int(xyxy[3]), int(xyxy[0]):int(xyxy[2])]
|
53 |
+
rider_image_path = f"non_helmet_riders/rider_{np.random.randint(10000)}.jpg"
|
54 |
+
cv2.imwrite(rider_image_path, cropped_img)
|
55 |
+
|
56 |
+
# Detect license plate if a non-helmet rider is found
|
57 |
if non_helmet_detected:
|
58 |
+
plate_text = reader.readtext(preprocess_image_for_ocr(image)) # Preprocess image before passing to OCR
|
59 |
for detection in plate_text:
|
60 |
text = detection[1]
|
61 |
+
# Filter for license plate-like text
|
62 |
+
if len(text) > 5 and text.isalnum(): # Assuming plates have a minimum length and alphanumeric
|
63 |
license_plate_text = text
|
64 |
+
|
65 |
+
# Create the cropped image of the plate
|
66 |
+
plate_img = np.array(image)[int(detection[0][0][1]):int(detection[0][2][1]),
|
67 |
+
int(detection[0][0][0]):int(detection[0][2][0])]
|
68 |
+
license_plate_image = Image.fromarray(plate_img)
|
69 |
break
|
70 |
|
71 |
+
# Convert the processed image back to PIL for Gradio display
|
72 |
img_pil = Image.fromarray(img_np)
|
73 |
+
return img_pil, helmet_status, license_plate_image, license_plate_text # Returning the image, helmet status, plate image, and license plate number
|
74 |
+
|
75 |
+
# Function to capture live video frame from webcam
|
76 |
+
def capture_webcam_frame():
|
77 |
+
cap = cv2.VideoCapture(0)
|
78 |
+
ret, frame = cap.read()
|
79 |
+
cap.release()
|
80 |
+
if ret:
|
81 |
+
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
82 |
+
return detect_non_helmet_and_plate(img)
|
83 |
+
return None, "Error", "I can't detect image", "I can't detect image"
|
84 |
|
85 |
+
# Set up Gradio interface with both upload and webcam inputs
|
86 |
+
def interface_fn(image, capture_from_webcam):
|
87 |
+
if capture_from_webcam:
|
88 |
+
return capture_webcam_frame()
|
89 |
+
else:
|
90 |
+
return detect_non_helmet_and_plate(image)
|
91 |
|
92 |
+
# Set up Gradio interface
|
93 |
interface = gr.Interface(
|
94 |
fn=interface_fn,
|
95 |
+
inputs=[
|
96 |
+
gr.Image(type="pil", label="Upload Image"),
|
97 |
+
gr.Checkbox(label="Capture from Webcam") # Use Checkbox to toggle between upload and webcam
|
98 |
+
],
|
99 |
outputs=[
|
100 |
+
gr.Image(type="pil", label="Processed Image"), # Output: Processed Image
|
101 |
+
gr.Textbox(label="Helmet Status"), # Output: Helmet Status
|
102 |
+
gr.Image(type="pil", label="License Plate Image"), # Output: License Plate Image
|
103 |
+
gr.Textbox(label="License Plate Number") # Output: License Plate Number
|
104 |
],
|
105 |
title="Helmet and License Plate Detection",
|
106 |
+
description="Detect riders without helmets. If a rider is without a helmet, capture their image and license plate.",
|
107 |
)
|
108 |
|
109 |
# Launch Gradio app
|
110 |
+
interface.launch(share=True)
|
|