File size: 3,301 Bytes
0e78cbf
 
 
 
 
 
 
 
9b2e4f0
0e78cbf
 
 
 
 
 
 
7fef6fd
 
 
 
 
 
 
 
 
 
 
0e78cbf
 
7fef6fd
0e78cbf
7fef6fd
0e78cbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fef6fd
 
 
 
0e78cbf
7fef6fd
 
 
 
0e78cbf
7fef6fd
 
0e78cbf
7fef6fd
0e78cbf
 
 
7fef6fd
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import cv2 
from matplotlib import pyplot as plt 
import torch
import numpy as np 
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
from segmentation_mask_overlay import overlay_masks
from typing import List
import logging 

class CLIPSEG:
    def __init__(self,model_name = "CIDAS/clipseg-rd64-refined",threshould=0.60):
        self.clip_processor = CLIPSegProcessor.from_pretrained(model_name)
        self.clip_model = CLIPSegForImageSegmentation.from_pretrained(model_name)
        self.threshould = threshould
        self.clip_model.to('cpu')
    
    @ staticmethod 
    def create_single_mask(predicted_masks , color = None ):
        
        if len(predicted_masks)>0:
            mask_image = np.zeros_like(predicted_masks[0])
        else:
            mask_image = np.zeros(shape=(352,352),dtype=np.unit8)
        for masks in predicted_masks:
            mask_image = np.bitwise_or(mask_image,masks)
        return mask_image

    @staticmethod
    def create_rgb_mask(mask,color=None):
        color = tuple(np.random.choice(range(128,255), size=3))
        gray_3_channel = cv2.merge((mask, mask, mask))
        gray_3_channel[mask==255] = 255 # for orignial color
        return gray_3_channel.astype(np.uint8)
    
    def get_segmentation_mask(self,image_path:str,object_prompts:List):
        image = cv2.cvtColor(cv2.imread(image_path),cv2.COLOR_BGR2RGB)
        logging.info("objects found  out from the image :{}".format(object_prompts))
        
        predicted_masks = []
        inputs = self.clip_processor(
            text=object_prompts,
            images=[image] * len(object_prompts),
            padding="max_length",
            return_tensors="pt",
            )
        with torch.no_grad():  # Use 'torch.no_grad()' to disable gradient computation
            outputs = self.clip_model(**inputs)
        preds = outputs.logits.unsqueeze(1)
        # detections = outputs.logits[0]  # Assuming class index 0

        for i in range(preds.shape[0]):
            predicted_mask =  torch.sigmoid(preds[i][0]).detach().cpu().numpy()
            predicted_mask = np.where(predicted_mask>self.threshould, 255,0)
            predicted_masks.append(predicted_mask)
        
        final_mask = self.create_single_mask(predicted_masks)
        rgb_predicted_mask = self.create_rgb_mask(final_mask)
        
        resize_image = cv2.resize(image,(352,352))
        rgb_mask_img = cv2.bitwise_and(resize_image,rgb_predicted_mask )
        
        # mask_labels = [f"{prompt}_{i}" for i,prompt in enumerate(object_prompts)]
        # cmap = plt.cm.tab20(np.arange(len(mask_labels)))[..., :-1]

        # bool_masks = [predicted_mask.astype('bool') for predicted_mask in predicted_masks]
        # final_mask = overlay_masks(resize_image,np.stack(bool_masks,-1),labels=mask_labels,colors=cmap,alpha=0.5,beta=0.7)
        try:
            cv2.imwrite('final_mask.png',rgb_mask_img)
            return 'Segmentation image created : final_mask.png'
        except Exception as e:
            logging.error("Error while saving the final mask :",e)
            return "unable to create a mask image "
    
if __name__=="__main__": 
  clip = CLIPSEG()
  obj = clip.get_segmentation_mask(image_path="../image_store/demo.jpg",object_prompts=['sand','dog'])