Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel, PeftConfig | |
# Load the PEFT configuration, base model, and tokenizer | |
config = PeftConfig.from_pretrained("SahilCarterr/Llama-2-7B-Chat-PEFT") | |
base_model = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7b-Chat-GPTQ", device_map='auto') | |
model = PeftModel.from_pretrained(base_model, "SahilCarterr/Llama-2-7B-Chat-PEFT") | |
tokenizer = AutoTokenizer.from_pretrained("SahilCarterr/Llama-2-7B-Chat-PEFT") | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
# Encode the input | |
inputs = tokenizer(message, return_tensors="pt").input_ids.to('cuda') | |
# Generate the response using the model | |
outputs = model.generate(inputs, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_p=top_p) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |