SahilCarterr commited on
Commit
66153f4
·
verified ·
1 Parent(s): 30556d0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -31
app.py CHANGED
@@ -1,20 +1,14 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
8
 
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
  messages = [{"role": "system", "content": system_message}]
19
 
20
  for val in history:
@@ -24,24 +18,15 @@ def respond(
24
  messages.append({"role": "assistant", "content": val[1]})
25
 
26
  messages.append({"role": "user", "content": message})
 
 
 
 
 
 
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
@@ -58,6 +43,5 @@ demo = gr.ChatInterface(
58
  ],
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ from peft import PeftModel, PeftConfig
4
 
5
+ # Load the PEFT configuration, base model, and tokenizer
6
+ config = PeftConfig.from_pretrained("SahilCarterr/Llama-2-7B-Chat-PEFT")
7
+ base_model = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7b-Chat-GPTQ", device_map='auto')
8
+ model = PeftModel.from_pretrained(base_model, "SahilCarterr/Llama-2-7B-Chat-PEFT")
9
+ tokenizer = AutoTokenizer.from_pretrained("SahilCarterr/Llama-2-7B-Chat-PEFT")
10
 
11
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
 
 
 
 
 
 
 
 
12
  messages = [{"role": "system", "content": system_message}]
13
 
14
  for val in history:
 
18
  messages.append({"role": "assistant", "content": val[1]})
19
 
20
  messages.append({"role": "user", "content": message})
21
+
22
+ # Encode the input
23
+ inputs = tokenizer(message, return_tensors="pt").input_ids.to('cuda')
24
+ # Generate the response using the model
25
+ outputs = model.generate(inputs, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_p=top_p)
26
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
27
 
28
+ yield response
 
 
 
 
 
 
 
 
 
29
 
 
 
 
 
 
 
30
  demo = gr.ChatInterface(
31
  respond,
32
  additional_inputs=[
 
43
  ],
44
  )
45
 
 
46
  if __name__ == "__main__":
47
  demo.launch()