Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
# Copyright (c) XiMing Xing. All rights reserved. | |
# Author: XiMing Xing | |
# Description: | |
from PIL import Image | |
from typing import AnyStr | |
import pathlib | |
import torch | |
import torch.nn.functional as F | |
from torchvision import transforms | |
from tqdm.auto import tqdm | |
from svgutils.transform import fromfile | |
from pytorch_svgrender.libs.engine import ModelState | |
from pytorch_svgrender.plt import plot_img, plot_couple, plot_img_title | |
from pytorch_svgrender.painter.clipfont import (imagenet_templates, compose_text_with_templates, Painter, | |
PainterOptimizer) | |
from pytorch_svgrender.libs.metric.clip_score import CLIPScoreWrapper | |
from pytorch_svgrender.libs.metric.piq.perceptual import LPIPS | |
class CLIPFontPipeline(ModelState): | |
def __init__(self, args): | |
logdir_ = f"sd{args.seed}" \ | |
f"-lpips{args.x.lam_lpips}-l2{args.x.lam_l2}" \ | |
f"{f'-{args.x.font.reinit_color}' if args.x.font.reinit else ''}" | |
super().__init__(args, log_path_suffix=logdir_) | |
# create log dir | |
self.png_logs_dir = self.result_path / "png_logs" | |
self.svg_logs_dir = self.result_path / "svg_logs" | |
if self.accelerator.is_main_process: | |
self.png_logs_dir.mkdir(parents=True, exist_ok=True) | |
self.svg_logs_dir.mkdir(parents=True, exist_ok=True) | |
# make video log | |
self.make_video = self.args.mv | |
if self.make_video: | |
self.frame_idx = 0 | |
self.frame_log_dir = self.result_path / "frame_logs" | |
self.frame_log_dir.mkdir(parents=True, exist_ok=True) | |
# init clip model | |
self.clip_wrapper = CLIPScoreWrapper(self.x_cfg.clip.model_name, device=self.device) | |
# init LPIPS | |
self.lam_lpips = 0 if self.x_cfg.get('lam_lpips', None) is None else self.x_cfg.lam_lpips | |
self.lpips_fn = LPIPS() | |
# l2 | |
self.lam_l2 = 0 if self.x_cfg.get('lam_l2', None) is None else self.x_cfg.lam_l2 | |
def load_target_file(self, tar_path: AnyStr, image_size: int = 224): | |
process_comp = transforms.Compose([ | |
transforms.Resize(size=(image_size, image_size)), | |
transforms.ToTensor(), | |
transforms.Lambda(lambda t: t.unsqueeze(0)), | |
]) | |
tar_pil = Image.open(tar_path).convert("RGB") # open file | |
target_img = process_comp(tar_pil) # preprocess | |
return target_img.to(self.device) | |
def cropper(self, x: torch.Tensor) -> torch.Tensor: | |
return transforms.RandomCrop(self.x_cfg.crop_size)(x) | |
def padding_cropper(self, x: torch.Tensor) -> torch.Tensor: | |
return transforms.RandomCrop(size=500, padding=100, fill=255, padding_mode='constant')(x) | |
def affine_to512(self, x: torch.Tensor) -> torch.Tensor: | |
comp = transforms.Compose([ | |
transforms.RandomPerspective(fill=0, p=1, distortion_scale=0.3), | |
transforms.Resize(512) | |
]) | |
return comp(x) | |
def resize224_norm(self, x: torch.Tensor) -> torch.Tensor: | |
x = torch.nn.functional.interpolate(x, size=224, mode='bicubic') | |
return self.clip_wrapper.norm_(x) | |
def painterly_rendering(self, svg_path, prompt): | |
svg_path = pathlib.Path(svg_path) | |
assert svg_path.exists(), f"'{svg_path}' is not exist." | |
# load renderer | |
renderer = self.load_renderer() | |
# rescale svg | |
fig = fromfile(svg_path.as_posix()) | |
fig.set_size(('512', '512')) | |
filename = str(svg_path.name).split('.')[0] | |
svg_path = self.result_path / f'{filename}_scale.svg' | |
fig.save(svg_path.as_posix()) | |
# init shapes and shape groups | |
init_img = renderer.init_shapes(svg_path.as_posix(), reinit_cfg=self.x_cfg.font) | |
self.print("init_image shape: ", init_img.shape) | |
plot_img(init_img, self.result_path, fname="init_img") | |
# load init file | |
with torch.no_grad(): | |
source_image = self.load_target_file(self.result_path / 'init_img.png', image_size=512) | |
source_image = source_image.detach() | |
source_image_feats = self.clip_wrapper.encode_image(self.resize224_norm(source_image)).detach() | |
# build optimizer | |
optimizer = PainterOptimizer(renderer, self.x_cfg.lr_base) | |
optimizer.init_optimizers() | |
# pre-calc | |
with torch.no_grad(): | |
# encode text prompt and source prompt | |
template_text = compose_text_with_templates(prompt, imagenet_templates) | |
text_features = self.clip_wrapper.encode_text(template_text).detach() | |
source = "A photo" | |
template_source = compose_text_with_templates(source, imagenet_templates) | |
text_source = self.clip_wrapper.encode_text(template_source).detach() | |
total_step = self.x_cfg.num_iter | |
with tqdm(initial=self.step, total=total_step, disable=not self.accelerator.is_main_process) as pbar: | |
while self.step < total_step: | |
img_t = renderer.get_image().to(self.device) | |
if self.make_video and (self.step % self.args.framefreq == 0 or self.step == total_step - 1): | |
plot_img(img_t, self.frame_log_dir, fname=f"iter{self.frame_idx}") | |
self.frame_idx += 1 | |
# style loss | |
# directional loss 1 | |
img_proc = [] | |
for n in range(self.x_cfg.num_crops): | |
target_crop = self.cropper(img_t) | |
target_crop = self.affine_to512(target_crop) | |
img_proc.append(target_crop) | |
img_aug = torch.cat(img_proc, dim=0) | |
image_features = self.clip_wrapper.encode_image(self.resize224_norm(img_aug)) | |
loss_patch = self.x_cfg.lam_patch * self.clip_wrapper.directional_loss(text_source, | |
source_image_feats, | |
text_features, | |
image_features, | |
self.x_cfg.thresh) | |
# directional loss 2 | |
img_proc2 = [] | |
for n in range(32): | |
target_crop = self.padding_cropper(img_t) | |
target_crop = self.affine_to512(target_crop) | |
img_proc2.append(target_crop) | |
img_aug2 = torch.cat(img_proc2, dim=0) | |
glob_features = self.clip_wrapper.encode_image(self.resize224_norm(img_aug2)) | |
loss_glob = self.x_cfg.lam_dir * self.clip_wrapper.directional_loss(text_source, | |
source_image_feats, | |
text_features, glob_features) | |
# LPIPS | |
loss_lpips = self.lam_lpips * self.lpips_fn(img_t, source_image) | |
# L2 | |
loss_l2 = self.lam_l2 * F.mse_loss(img_t, source_image) | |
# total loss | |
loss = loss_patch + loss_glob + loss_lpips + loss_l2 | |
# log | |
p_lr, c_lr = optimizer.get_lr() | |
pbar.set_description( | |
f"point_lr: {p_lr}, color_lr: {c_lr}, " | |
f"L_total: {loss.item():.4f}, " | |
f"L_patch: {loss_patch.item():.4f}, " | |
f"L_glob: {loss_glob.item():.4f}, " | |
f"L_lpips: {loss_lpips.item():.4f}, " | |
f"L_l2: {loss_l2.item():.4f}." | |
) | |
# backward and optimization | |
optimizer.zero_grad_() | |
loss.backward() | |
optimizer.step_() | |
renderer.clip_curve_shape() | |
if self.x_cfg.lr_schedule: | |
optimizer.update_lr(self.step) | |
if self.step % self.args.save_step == 0 and self.accelerator.is_main_process: | |
plot_couple(init_img, | |
img_t, | |
self.step, | |
output_dir=self.png_logs_dir.as_posix(), | |
fname=f"iter{self.step}") | |
renderer.pretty_save_svg(self.svg_logs_dir / f"svg_iter{self.step}.svg") | |
self.step += 1 | |
pbar.update(1) | |
# log final results | |
renderer.pretty_save_svg(self.result_path / "final_svg.svg") | |
final_raster_sketch = renderer.get_image().to(self.device) | |
plot_img_title(final_raster_sketch, | |
title=f'final result - {self.step} step', | |
output_dir=self.result_path, | |
fname='final_render') | |
if self.make_video: | |
from subprocess import call | |
call([ | |
"ffmpeg", | |
"-framerate", f"{self.args.framerate}", | |
"-i", (self.frame_log_dir / "iter%d.png").as_posix(), | |
"-vb", "20M", | |
(self.result_path / "clipfont_rendering.mp4").as_posix() | |
]) | |
self.close(msg="painterly rendering complete.") | |
def load_renderer(self): | |
renderer = Painter(device=self.device) | |
return renderer | |