File size: 9,473 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# -*- coding: utf-8 -*-
# Copyright (c) XiMing Xing. All rights reserved.
# Author: XiMing Xing
# Description:
from PIL import Image
from typing import AnyStr
import pathlib

import torch
import torch.nn.functional as F
from torchvision import transforms
from tqdm.auto import tqdm
from svgutils.transform import fromfile

from pytorch_svgrender.libs.engine import ModelState
from pytorch_svgrender.plt import plot_img, plot_couple, plot_img_title
from pytorch_svgrender.painter.clipfont import (imagenet_templates, compose_text_with_templates, Painter,
                                                PainterOptimizer)
from pytorch_svgrender.libs.metric.clip_score import CLIPScoreWrapper
from pytorch_svgrender.libs.metric.piq.perceptual import LPIPS


class CLIPFontPipeline(ModelState):

    def __init__(self, args):
        logdir_ = f"sd{args.seed}" \
                  f"-lpips{args.x.lam_lpips}-l2{args.x.lam_l2}" \
                  f"{f'-{args.x.font.reinit_color}' if args.x.font.reinit else ''}"
        super().__init__(args, log_path_suffix=logdir_)

        # create log dir
        self.png_logs_dir = self.result_path / "png_logs"
        self.svg_logs_dir = self.result_path / "svg_logs"
        if self.accelerator.is_main_process:
            self.png_logs_dir.mkdir(parents=True, exist_ok=True)
            self.svg_logs_dir.mkdir(parents=True, exist_ok=True)

        # make video log
        self.make_video = self.args.mv
        if self.make_video:
            self.frame_idx = 0
            self.frame_log_dir = self.result_path / "frame_logs"
            self.frame_log_dir.mkdir(parents=True, exist_ok=True)

        # init clip model
        self.clip_wrapper = CLIPScoreWrapper(self.x_cfg.clip.model_name, device=self.device)
        # init LPIPS
        self.lam_lpips = 0 if self.x_cfg.get('lam_lpips', None) is None else self.x_cfg.lam_lpips
        self.lpips_fn = LPIPS()
        # l2
        self.lam_l2 = 0 if self.x_cfg.get('lam_l2', None) is None else self.x_cfg.lam_l2

    def load_target_file(self, tar_path: AnyStr, image_size: int = 224):
        process_comp = transforms.Compose([
            transforms.Resize(size=(image_size, image_size)),
            transforms.ToTensor(),
            transforms.Lambda(lambda t: t.unsqueeze(0)),
        ])

        tar_pil = Image.open(tar_path).convert("RGB")  # open file
        target_img = process_comp(tar_pil)  # preprocess
        return target_img.to(self.device)

    def cropper(self, x: torch.Tensor) -> torch.Tensor:
        return transforms.RandomCrop(self.x_cfg.crop_size)(x)

    def padding_cropper(self, x: torch.Tensor) -> torch.Tensor:
        return transforms.RandomCrop(size=500, padding=100, fill=255, padding_mode='constant')(x)

    def affine_to512(self, x: torch.Tensor) -> torch.Tensor:
        comp = transforms.Compose([
            transforms.RandomPerspective(fill=0, p=1, distortion_scale=0.3),
            transforms.Resize(512)
        ])
        return comp(x)

    def resize224_norm(self, x: torch.Tensor) -> torch.Tensor:
        x = torch.nn.functional.interpolate(x, size=224, mode='bicubic')
        return self.clip_wrapper.norm_(x)

    def painterly_rendering(self, svg_path, prompt):
        svg_path = pathlib.Path(svg_path)
        assert svg_path.exists(), f"'{svg_path}' is not exist."

        # load renderer
        renderer = self.load_renderer()

        # rescale svg
        fig = fromfile(svg_path.as_posix())
        fig.set_size(('512', '512'))
        filename = str(svg_path.name).split('.')[0]
        svg_path = self.result_path / f'{filename}_scale.svg'
        fig.save(svg_path.as_posix())

        # init shapes and shape groups
        init_img = renderer.init_shapes(svg_path.as_posix(), reinit_cfg=self.x_cfg.font)
        self.print("init_image shape: ", init_img.shape)
        plot_img(init_img, self.result_path, fname="init_img")

        # load init file
        with torch.no_grad():
            source_image = self.load_target_file(self.result_path / 'init_img.png', image_size=512)
            source_image = source_image.detach()
            source_image_feats = self.clip_wrapper.encode_image(self.resize224_norm(source_image)).detach()

        # build optimizer
        optimizer = PainterOptimizer(renderer, self.x_cfg.lr_base)
        optimizer.init_optimizers()

        # pre-calc
        with torch.no_grad():
            # encode text prompt and source prompt
            template_text = compose_text_with_templates(prompt, imagenet_templates)
            text_features = self.clip_wrapper.encode_text(template_text).detach()
            source = "A photo"
            template_source = compose_text_with_templates(source, imagenet_templates)
            text_source = self.clip_wrapper.encode_text(template_source).detach()

        total_step = self.x_cfg.num_iter
        with tqdm(initial=self.step, total=total_step, disable=not self.accelerator.is_main_process) as pbar:
            while self.step < total_step:
                img_t = renderer.get_image().to(self.device)

                if self.make_video and (self.step % self.args.framefreq == 0 or self.step == total_step - 1):
                    plot_img(img_t, self.frame_log_dir, fname=f"iter{self.frame_idx}")
                    self.frame_idx += 1

                # style loss
                # directional loss 1
                img_proc = []
                for n in range(self.x_cfg.num_crops):
                    target_crop = self.cropper(img_t)
                    target_crop = self.affine_to512(target_crop)
                    img_proc.append(target_crop)
                img_aug = torch.cat(img_proc, dim=0)
                image_features = self.clip_wrapper.encode_image(self.resize224_norm(img_aug))

                loss_patch = self.x_cfg.lam_patch * self.clip_wrapper.directional_loss(text_source,
                                                                                       source_image_feats,
                                                                                       text_features,
                                                                                       image_features,
                                                                                       self.x_cfg.thresh)

                # directional loss 2
                img_proc2 = []
                for n in range(32):
                    target_crop = self.padding_cropper(img_t)
                    target_crop = self.affine_to512(target_crop)
                    img_proc2.append(target_crop)
                img_aug2 = torch.cat(img_proc2, dim=0)
                glob_features = self.clip_wrapper.encode_image(self.resize224_norm(img_aug2))

                loss_glob = self.x_cfg.lam_dir * self.clip_wrapper.directional_loss(text_source,
                                                                                    source_image_feats,
                                                                                    text_features, glob_features)

                # LPIPS
                loss_lpips = self.lam_lpips * self.lpips_fn(img_t, source_image)

                # L2
                loss_l2 = self.lam_l2 * F.mse_loss(img_t, source_image)

                # total loss
                loss = loss_patch + loss_glob + loss_lpips + loss_l2

                # log
                p_lr, c_lr = optimizer.get_lr()
                pbar.set_description(
                    f"point_lr: {p_lr}, color_lr: {c_lr}, "
                    f"L_total: {loss.item():.4f}, "
                    f"L_patch: {loss_patch.item():.4f}, "
                    f"L_glob: {loss_glob.item():.4f}, "
                    f"L_lpips: {loss_lpips.item():.4f}, "
                    f"L_l2: {loss_l2.item():.4f}."
                )

                # backward and optimization
                optimizer.zero_grad_()
                loss.backward()
                optimizer.step_()

                renderer.clip_curve_shape()

                if self.x_cfg.lr_schedule:
                    optimizer.update_lr(self.step)

                if self.step % self.args.save_step == 0 and self.accelerator.is_main_process:
                    plot_couple(init_img,
                                img_t,
                                self.step,
                                output_dir=self.png_logs_dir.as_posix(),
                                fname=f"iter{self.step}")
                    renderer.pretty_save_svg(self.svg_logs_dir / f"svg_iter{self.step}.svg")

                self.step += 1
                pbar.update(1)

        # log final results
        renderer.pretty_save_svg(self.result_path / "final_svg.svg")
        final_raster_sketch = renderer.get_image().to(self.device)
        plot_img_title(final_raster_sketch,
                       title=f'final result - {self.step} step',
                       output_dir=self.result_path,
                       fname='final_render')

        if self.make_video:
            from subprocess import call
            call([
                "ffmpeg",
                "-framerate", f"{self.args.framerate}",
                "-i", (self.frame_log_dir / "iter%d.png").as_posix(),
                "-vb", "20M",
                (self.result_path / "clipfont_rendering.mp4").as_posix()
            ])

        self.close(msg="painterly rendering complete.")

    def load_renderer(self):
        renderer = Painter(device=self.device)
        return renderer