S-Dreamer's picture
Update app.py
d5be079 verified
raw
history blame
4.18 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
# Load the Salesforce/codet5-base model and tokenizer
# We are using the 'Salesforce/codet5-base' model, which is a pre-trained model for code-related tasks.
# The AutoTokenizer and AutoModelForSeq2SeqLM classes from the Transformers library are used to load the model and tokenizer.
model_name = "Salesforce/codet5-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# Function to generate code
# This function takes a prompt (code-related query) as input and generates code based on that prompt.
# It uses the loaded model and tokenizer to encode the input, generate the output, and then decode the generated text.
def generate_code(prompt, max_length=100):
# Encode the input prompt using the tokenizer
input_ids = tokenizer.encode(prompt, return_tensors="pt")
# Generate the output using the model
# The `model.generate()` function is used to generate the output sequence based on the input.
# The `max_length` parameter sets the maximum length of the generated sequence.
# The `num_return_sequences` parameter specifies the number of output sequences to be generated (in this case, 1).
output = model.generate(input_ids, max_length=max_length, num_return_sequences=1)
# Decode the generated output to get the actual code
# The `tokenizer.decode()` function is used to convert the output token IDs back to readable text.
# The `skip_special_tokens=True` argument ensures that any special tokens (e.g., start/end of sequence tokens) are removed from the output.
generated_code = tokenizer.decode(output[0], skip_special_tokens=True)
# Return the generated code
return generated_code
# Function to handle chat interaction
# This function is responsible for managing the chat interaction between the user and the system.
# It takes the user's message and the chat history as input, and returns the system's response and the updated chat history.
def chat_interaction(message, history):
# Initialize the chat history if it's not provided
history = history or []
# Generate the response using the `generate_code` function
response = generate_code(message)
# Update the chat history by appending the user's message and the system's response
history.append((message, response))
# Return the empty message (to clear the input field) and the updated chat history
return "", history
# Create the Gradio interface
# The Gradio library is used to create an interactive web interface for the chat application.
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# Add a Markdown title for the interface
gr.Markdown("# S-Dreamer Salesforce/codet5-base Chat Interface")
# Create a row with two columns
with gr.Row():
# Left column for the chat area
with gr.Column(scale=3):
# Add a chatbot component to display the chat history
chatbot = gr.Chatbot(height=400)
# Add a text input field for the user to enter messages
message = gr.Textbox(label="Enter your code-related query", placeholder="Type your message here...")
# Add a submit button
submit_button = gr.Button("Submit")
# Right column for the feature list
with gr.Column(scale=1):
# Add Markdown sections for the features
gr.Markdown("## Features")
gr.Markdown("- Code generation")
gr.Markdown("- Code completion")
gr.Markdown("- Code explanation")
gr.Markdown("- Error correction")
# Add a clear button to reset the chat
clear_button = gr.Button("Clear Chat")
# Connect the submit button to the `chat_interaction` function
submit_button.click(chat_interaction, inputs=[message, chatbot], outputs=[message, chatbot])
# Connect the clear button to a lambda function that clears the chat
clear_button.click(lambda: None, outputs=[chatbot], inputs=[])
# Launch the Gradio interface
demo.launch()