S-Dreamer commited on
Commit
d5be079
·
verified ·
1 Parent(s): 1d569c6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -7
app.py CHANGED
@@ -1,10 +1,85 @@
1
  import gradio as gr
 
 
2
 
3
- with gr.Blocks(fill_height=True) as demo:
4
- with gr.Sidebar():
5
- gr.Markdown("# Inference Provider")
6
- gr.Markdown("This Space showcases the Salesforce/codet5-base model, served by the hf-inference API. Sign in with your Hugging Face account to use this API.")
7
- button = gr.LoginButton("Sign in")
8
- gr.load("models/Salesforce/codet5-base", accept_token=button, provider="hf-inference")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
+ import torch
4
 
5
+ # Load the Salesforce/codet5-base model and tokenizer
6
+ # We are using the 'Salesforce/codet5-base' model, which is a pre-trained model for code-related tasks.
7
+ # The AutoTokenizer and AutoModelForSeq2SeqLM classes from the Transformers library are used to load the model and tokenizer.
8
+ model_name = "Salesforce/codet5-base"
9
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
10
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
11
+
12
+ # Function to generate code
13
+ # This function takes a prompt (code-related query) as input and generates code based on that prompt.
14
+ # It uses the loaded model and tokenizer to encode the input, generate the output, and then decode the generated text.
15
+ def generate_code(prompt, max_length=100):
16
+ # Encode the input prompt using the tokenizer
17
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
18
+
19
+ # Generate the output using the model
20
+ # The `model.generate()` function is used to generate the output sequence based on the input.
21
+ # The `max_length` parameter sets the maximum length of the generated sequence.
22
+ # The `num_return_sequences` parameter specifies the number of output sequences to be generated (in this case, 1).
23
+ output = model.generate(input_ids, max_length=max_length, num_return_sequences=1)
24
+
25
+ # Decode the generated output to get the actual code
26
+ # The `tokenizer.decode()` function is used to convert the output token IDs back to readable text.
27
+ # The `skip_special_tokens=True` argument ensures that any special tokens (e.g., start/end of sequence tokens) are removed from the output.
28
+ generated_code = tokenizer.decode(output[0], skip_special_tokens=True)
29
+
30
+ # Return the generated code
31
+ return generated_code
32
+
33
+ # Function to handle chat interaction
34
+ # This function is responsible for managing the chat interaction between the user and the system.
35
+ # It takes the user's message and the chat history as input, and returns the system's response and the updated chat history.
36
+ def chat_interaction(message, history):
37
+ # Initialize the chat history if it's not provided
38
+ history = history or []
39
+
40
+ # Generate the response using the `generate_code` function
41
+ response = generate_code(message)
42
 
43
+ # Update the chat history by appending the user's message and the system's response
44
+ history.append((message, response))
45
+
46
+ # Return the empty message (to clear the input field) and the updated chat history
47
+ return "", history
48
+
49
+ # Create the Gradio interface
50
+ # The Gradio library is used to create an interactive web interface for the chat application.
51
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
52
+ # Add a Markdown title for the interface
53
+ gr.Markdown("# S-Dreamer Salesforce/codet5-base Chat Interface")
54
+
55
+ # Create a row with two columns
56
+ with gr.Row():
57
+ # Left column for the chat area
58
+ with gr.Column(scale=3):
59
+ # Add a chatbot component to display the chat history
60
+ chatbot = gr.Chatbot(height=400)
61
+ # Add a text input field for the user to enter messages
62
+ message = gr.Textbox(label="Enter your code-related query", placeholder="Type your message here...")
63
+ # Add a submit button
64
+ submit_button = gr.Button("Submit")
65
+
66
+ # Right column for the feature list
67
+ with gr.Column(scale=1):
68
+ # Add Markdown sections for the features
69
+ gr.Markdown("## Features")
70
+ gr.Markdown("- Code generation")
71
+ gr.Markdown("- Code completion")
72
+ gr.Markdown("- Code explanation")
73
+ gr.Markdown("- Error correction")
74
+
75
+ # Add a clear button to reset the chat
76
+ clear_button = gr.Button("Clear Chat")
77
+
78
+ # Connect the submit button to the `chat_interaction` function
79
+ submit_button.click(chat_interaction, inputs=[message, chatbot], outputs=[message, chatbot])
80
+
81
+ # Connect the clear button to a lambda function that clears the chat
82
+ clear_button.click(lambda: None, outputs=[chatbot], inputs=[])
83
+
84
+ # Launch the Gradio interface
85
+ demo.launch()