File size: 9,109 Bytes
46d2a02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import numpy as np
from PIL import Image
from torchvision import transforms, models
import torch
import torch.nn.functional as F
import streamlit as st
import pickle
from sklearn.neighbors import NearestNeighbors
import faiss

# Set up the image transformation
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

# Data augmentation transforms
augment_transform = transforms.Compose([
    transforms.RandomHorizontalFlip(),
    transforms.RandomRotation(20),
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    transforms.RandomResizedCrop(224, scale=(0.8, 1.0), ratio=(0.75, 1.33)),
])

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

@st.cache_resource
def load_model():
    model = models.efficientnet_b0(pretrained=True)
    model.classifier = torch.nn.Identity()  # Remove the final classification layer
    model = model.to(device)
    model.eval()
    return model

model = load_model()

def extract_features(img):
    img_t = transform(img)
    batch_t = torch.unsqueeze(img_t, 0).to(device)
    with torch.no_grad():
        features = model(batch_t)
    features = F.normalize(features, p=2, dim=1)
    return features.cpu().squeeze().numpy()

def generate_augmented_images(img, num_augmented=5):
    augmented_images = []
    for _ in range(num_augmented):
        augmented = augment_transform(img)
        augmented_images.append(augmented)
    return augmented_images

# def load_and_index_images(root_dir): #without adding data augmented images
#     image_paths = []
#     features_list = []
#     categories = []
#     for category in os.listdir(root_dir):
#         category_path = os.path.join(root_dir, category)
#         if os.path.isdir(category_path):
#             for img_name in os.listdir(category_path):
#                 img_path = os.path.join(category_path, img_name)
#                 img = Image.open(img_path).convert('RGB')
                
#                 features = extract_features(img)
#                 image_paths.append(img_path)
#                 features_list.append(features)
#                 categories.append(category)
    
#     features_array = np.array(features_list).astype('float32')
    
#     d = features_array.shape[1]  # dimension
#     index = faiss.IndexFlatIP(d)  # use inner product (cosine similarity on normalized vectors)
#     index.add(features_array)
    
#     return index, image_paths, categories

def load_and_index_images(root_dir):
    image_paths = []
    features_list = []
    categories = []
    for category in os.listdir(root_dir):
        category_path = os.path.join(root_dir, category)
        if os.path.isdir(category_path):
            for img_name in os.listdir(category_path):
                img_path = os.path.join(category_path, img_name)
                img = Image.open(img_path).convert('RGB')
                
                 # Generate augmented images
                augmented_images = generate_augmented_images(img)

                features = extract_features(img)
                image_paths.append(img_path)
                features_list.append(features)
                categories.append(category)

                for aug_img in augmented_images:
                    aug_features = extract_features(aug_img)
                    features_list.append(aug_features)
                    image_paths.append(img_path)  # Use original path for augmented images
                    categories.append(category)
    
    features_array = np.array(features_list).astype('float32')
    
    d = features_array.shape[1]  # dimension
    index = faiss.IndexFlatIP(d)  # use inner product (cosine similarity on normalized vectors)
    index.add(features_array)
    
    return index, image_paths, categories

def save_index_and_metadata(nn, image_paths, categories, index_file, metadata_file):
    with open(index_file, 'wb') as f:
        pickle.dump(nn, f)
    with open(metadata_file, 'wb') as f:
        pickle.dump((image_paths, categories), f)

def load_index_and_metadata(index_file, metadata_file):
    with open(index_file, 'rb') as f:
        nn = pickle.load(f)
    with open(metadata_file, 'rb') as f:
        image_paths, categories = pickle.load(f)
    return nn, image_paths, categories

def search_similar_images(index, image_paths, categories, query_features, k=20):
    query_features = query_features.reshape(1, -1).astype('float32')
    similarities, indices = index.search(query_features, k)
    
    similar_images = [image_paths[i] for i in indices[0]]
    similarity_scores = similarities[0]
    similar_categories = [categories[i] for i in indices[0]]
    
    return similar_images, similarity_scores, similar_categories

def index_files_exist(index_file, metadata_file):
    return os.path.exists(index_file) and os.path.exists(metadata_file)

def main():
    st.title("Image Classification and Similarity Search")

    index_file = "faiss-d2-nn_index.pkl"
    metadata_file = "faiss-d2-image_metadata.pkl"

    if not index_files_exist(index_file, metadata_file):
        st.warning("Index files not found. Creating new index...")
        root_dir = "Dataset2"  # Replace with your dataset path
        index, image_paths, categories = load_and_index_images(root_dir)
        save_index_and_metadata(index, image_paths, categories, index_file, metadata_file)
        st.success("Index created and saved successfully!")
    else:
        index, image_paths, categories = load_index_and_metadata(index_file, metadata_file)
        st.success("Index loaded successfully!")

    uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])

    if uploaded_file is not None:
        image = Image.open(uploaded_file).convert('RGB')
        query_features = extract_features(image)

        # Search for similar images
        similar_images, similarities, similar_categories = search_similar_images(index, image_paths, categories, query_features, k=50)

        # Get the predicted class (most common category among top 5 similar images)
        predicted_class = max(set(similar_categories[:5]), key=similar_categories[:5].count)

        # Display query and matched image
        col1, col2 = st.columns(2)
        with col1:
            st.subheader("Query Image")
            st.image(image, caption="Uploaded Image", use_column_width=True)
            st.write(f"Image ID: {uploaded_file.name}")
        with col2:
            if similar_images:
                st.subheader("Matched Image")
                matched_image_path = similar_images[0]
                st.image(Image.open(matched_image_path), 
                        caption=f"Matched Image (Similarity: {similarities[0]:.2f})", 
                        use_column_width=True)
                st.write(f"Image ID: {os.path.basename(matched_image_path)}")
            else:
                st.write("No matched image found")

        st.subheader(f"Product Category: {predicted_class}")

        similarity_threshold = st.slider("Similarity threshold", min_value=0.0, max_value=1.0, value=0.5, step=0.05)

        # Filter results based on similarity threshold and predicted class, and remove duplicates
        query_file_name = uploaded_file.name
        seen_file_names = set([query_file_name])  # Add query image to seen set
        filtered_results = []
        for img, sim, cat in zip(similar_images[1:], similarities[1:], similar_categories[1:]):  # Start from index 1
            file_name = os.path.basename(img)
            if sim >= similarity_threshold and cat == predicted_class and file_name not in seen_file_names:
                filtered_results.append((img, sim))
                seen_file_names.add(file_name)

        # Rest of the code remains the same
        if filtered_results:
            max_images = len(filtered_results)
            num_display = st.slider("Number of similar images to display", min_value=0, max_value=max_images, value=min(20, max_images))

            st.subheader("Similar Images")
            st.info(f"Displaying {num_display} out of {max_images} unique similar images found for the uploaded query image.")

            # Create a grid for displaying similar images
            num_cols = 5
            num_rows = (num_display + num_cols - 1) // num_cols

            for row in range(num_rows):
                cols = st.columns(num_cols)
                for col in range(num_cols):
                    idx = row * num_cols + col
                    if idx < num_display:
                        img_path, sim = filtered_results[idx]
                        with cols[col]:
                            st.image(Image.open(img_path), use_column_width=True)
                            st.write(f"Similarity: {sim:.2f}")
                            st.write(f"Image ID: {os.path.basename(img_path)}")

        else:
            st.info("No similar images found above the similarity threshold in the predicted class.")

if __name__ == "__main__":
    main()