Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from torchvision import transforms, models
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import streamlit as st
|
8 |
+
import pickle
|
9 |
+
from sklearn.neighbors import NearestNeighbors
|
10 |
+
import faiss
|
11 |
+
|
12 |
+
# Set up the image transformation
|
13 |
+
transform = transforms.Compose([
|
14 |
+
transforms.Resize((224, 224)),
|
15 |
+
transforms.ToTensor(),
|
16 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
17 |
+
])
|
18 |
+
|
19 |
+
# Data augmentation transforms
|
20 |
+
augment_transform = transforms.Compose([
|
21 |
+
transforms.RandomHorizontalFlip(),
|
22 |
+
transforms.RandomRotation(20),
|
23 |
+
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
|
24 |
+
transforms.RandomResizedCrop(224, scale=(0.8, 1.0), ratio=(0.75, 1.33)),
|
25 |
+
])
|
26 |
+
|
27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
+
|
29 |
+
@st.cache_resource
|
30 |
+
def load_model():
|
31 |
+
model = models.efficientnet_b0(pretrained=True)
|
32 |
+
model.classifier = torch.nn.Identity() # Remove the final classification layer
|
33 |
+
model = model.to(device)
|
34 |
+
model.eval()
|
35 |
+
return model
|
36 |
+
|
37 |
+
model = load_model()
|
38 |
+
|
39 |
+
def extract_features(img):
|
40 |
+
img_t = transform(img)
|
41 |
+
batch_t = torch.unsqueeze(img_t, 0).to(device)
|
42 |
+
with torch.no_grad():
|
43 |
+
features = model(batch_t)
|
44 |
+
features = F.normalize(features, p=2, dim=1)
|
45 |
+
return features.cpu().squeeze().numpy()
|
46 |
+
|
47 |
+
def generate_augmented_images(img, num_augmented=5):
|
48 |
+
augmented_images = []
|
49 |
+
for _ in range(num_augmented):
|
50 |
+
augmented = augment_transform(img)
|
51 |
+
augmented_images.append(augmented)
|
52 |
+
return augmented_images
|
53 |
+
|
54 |
+
# def load_and_index_images(root_dir): #without adding data augmented images
|
55 |
+
# image_paths = []
|
56 |
+
# features_list = []
|
57 |
+
# categories = []
|
58 |
+
# for category in os.listdir(root_dir):
|
59 |
+
# category_path = os.path.join(root_dir, category)
|
60 |
+
# if os.path.isdir(category_path):
|
61 |
+
# for img_name in os.listdir(category_path):
|
62 |
+
# img_path = os.path.join(category_path, img_name)
|
63 |
+
# img = Image.open(img_path).convert('RGB')
|
64 |
+
|
65 |
+
# features = extract_features(img)
|
66 |
+
# image_paths.append(img_path)
|
67 |
+
# features_list.append(features)
|
68 |
+
# categories.append(category)
|
69 |
+
|
70 |
+
# features_array = np.array(features_list).astype('float32')
|
71 |
+
|
72 |
+
# d = features_array.shape[1] # dimension
|
73 |
+
# index = faiss.IndexFlatIP(d) # use inner product (cosine similarity on normalized vectors)
|
74 |
+
# index.add(features_array)
|
75 |
+
|
76 |
+
# return index, image_paths, categories
|
77 |
+
|
78 |
+
def load_and_index_images(root_dir):
|
79 |
+
image_paths = []
|
80 |
+
features_list = []
|
81 |
+
categories = []
|
82 |
+
for category in os.listdir(root_dir):
|
83 |
+
category_path = os.path.join(root_dir, category)
|
84 |
+
if os.path.isdir(category_path):
|
85 |
+
for img_name in os.listdir(category_path):
|
86 |
+
img_path = os.path.join(category_path, img_name)
|
87 |
+
img = Image.open(img_path).convert('RGB')
|
88 |
+
|
89 |
+
# Generate augmented images
|
90 |
+
augmented_images = generate_augmented_images(img)
|
91 |
+
|
92 |
+
features = extract_features(img)
|
93 |
+
image_paths.append(img_path)
|
94 |
+
features_list.append(features)
|
95 |
+
categories.append(category)
|
96 |
+
|
97 |
+
for aug_img in augmented_images:
|
98 |
+
aug_features = extract_features(aug_img)
|
99 |
+
features_list.append(aug_features)
|
100 |
+
image_paths.append(img_path) # Use original path for augmented images
|
101 |
+
categories.append(category)
|
102 |
+
|
103 |
+
features_array = np.array(features_list).astype('float32')
|
104 |
+
|
105 |
+
d = features_array.shape[1] # dimension
|
106 |
+
index = faiss.IndexFlatIP(d) # use inner product (cosine similarity on normalized vectors)
|
107 |
+
index.add(features_array)
|
108 |
+
|
109 |
+
return index, image_paths, categories
|
110 |
+
|
111 |
+
def save_index_and_metadata(nn, image_paths, categories, index_file, metadata_file):
|
112 |
+
with open(index_file, 'wb') as f:
|
113 |
+
pickle.dump(nn, f)
|
114 |
+
with open(metadata_file, 'wb') as f:
|
115 |
+
pickle.dump((image_paths, categories), f)
|
116 |
+
|
117 |
+
def load_index_and_metadata(index_file, metadata_file):
|
118 |
+
with open(index_file, 'rb') as f:
|
119 |
+
nn = pickle.load(f)
|
120 |
+
with open(metadata_file, 'rb') as f:
|
121 |
+
image_paths, categories = pickle.load(f)
|
122 |
+
return nn, image_paths, categories
|
123 |
+
|
124 |
+
def search_similar_images(index, image_paths, categories, query_features, k=20):
|
125 |
+
query_features = query_features.reshape(1, -1).astype('float32')
|
126 |
+
similarities, indices = index.search(query_features, k)
|
127 |
+
|
128 |
+
similar_images = [image_paths[i] for i in indices[0]]
|
129 |
+
similarity_scores = similarities[0]
|
130 |
+
similar_categories = [categories[i] for i in indices[0]]
|
131 |
+
|
132 |
+
return similar_images, similarity_scores, similar_categories
|
133 |
+
|
134 |
+
def index_files_exist(index_file, metadata_file):
|
135 |
+
return os.path.exists(index_file) and os.path.exists(metadata_file)
|
136 |
+
|
137 |
+
def main():
|
138 |
+
st.title("Image Classification and Similarity Search")
|
139 |
+
|
140 |
+
index_file = "faiss-d2-nn_index.pkl"
|
141 |
+
metadata_file = "faiss-d2-image_metadata.pkl"
|
142 |
+
|
143 |
+
if not index_files_exist(index_file, metadata_file):
|
144 |
+
st.warning("Index files not found. Creating new index...")
|
145 |
+
root_dir = "Dataset2" # Replace with your dataset path
|
146 |
+
index, image_paths, categories = load_and_index_images(root_dir)
|
147 |
+
save_index_and_metadata(index, image_paths, categories, index_file, metadata_file)
|
148 |
+
st.success("Index created and saved successfully!")
|
149 |
+
else:
|
150 |
+
index, image_paths, categories = load_index_and_metadata(index_file, metadata_file)
|
151 |
+
st.success("Index loaded successfully!")
|
152 |
+
|
153 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
154 |
+
|
155 |
+
if uploaded_file is not None:
|
156 |
+
image = Image.open(uploaded_file).convert('RGB')
|
157 |
+
query_features = extract_features(image)
|
158 |
+
|
159 |
+
# Search for similar images
|
160 |
+
similar_images, similarities, similar_categories = search_similar_images(index, image_paths, categories, query_features, k=50)
|
161 |
+
|
162 |
+
# Get the predicted class (most common category among top 5 similar images)
|
163 |
+
predicted_class = max(set(similar_categories[:5]), key=similar_categories[:5].count)
|
164 |
+
|
165 |
+
# Display query and matched image
|
166 |
+
col1, col2 = st.columns(2)
|
167 |
+
with col1:
|
168 |
+
st.subheader("Query Image")
|
169 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
170 |
+
st.write(f"Image ID: {uploaded_file.name}")
|
171 |
+
with col2:
|
172 |
+
if similar_images:
|
173 |
+
st.subheader("Matched Image")
|
174 |
+
matched_image_path = similar_images[0]
|
175 |
+
st.image(Image.open(matched_image_path),
|
176 |
+
caption=f"Matched Image (Similarity: {similarities[0]:.2f})",
|
177 |
+
use_column_width=True)
|
178 |
+
st.write(f"Image ID: {os.path.basename(matched_image_path)}")
|
179 |
+
else:
|
180 |
+
st.write("No matched image found")
|
181 |
+
|
182 |
+
st.subheader(f"Product Category: {predicted_class}")
|
183 |
+
|
184 |
+
similarity_threshold = st.slider("Similarity threshold", min_value=0.0, max_value=1.0, value=0.5, step=0.05)
|
185 |
+
|
186 |
+
# Filter results based on similarity threshold and predicted class, and remove duplicates
|
187 |
+
query_file_name = uploaded_file.name
|
188 |
+
seen_file_names = set([query_file_name]) # Add query image to seen set
|
189 |
+
filtered_results = []
|
190 |
+
for img, sim, cat in zip(similar_images[1:], similarities[1:], similar_categories[1:]): # Start from index 1
|
191 |
+
file_name = os.path.basename(img)
|
192 |
+
if sim >= similarity_threshold and cat == predicted_class and file_name not in seen_file_names:
|
193 |
+
filtered_results.append((img, sim))
|
194 |
+
seen_file_names.add(file_name)
|
195 |
+
|
196 |
+
# Rest of the code remains the same
|
197 |
+
if filtered_results:
|
198 |
+
max_images = len(filtered_results)
|
199 |
+
num_display = st.slider("Number of similar images to display", min_value=0, max_value=max_images, value=min(20, max_images))
|
200 |
+
|
201 |
+
st.subheader("Similar Images")
|
202 |
+
st.info(f"Displaying {num_display} out of {max_images} unique similar images found for the uploaded query image.")
|
203 |
+
|
204 |
+
# Create a grid for displaying similar images
|
205 |
+
num_cols = 5
|
206 |
+
num_rows = (num_display + num_cols - 1) // num_cols
|
207 |
+
|
208 |
+
for row in range(num_rows):
|
209 |
+
cols = st.columns(num_cols)
|
210 |
+
for col in range(num_cols):
|
211 |
+
idx = row * num_cols + col
|
212 |
+
if idx < num_display:
|
213 |
+
img_path, sim = filtered_results[idx]
|
214 |
+
with cols[col]:
|
215 |
+
st.image(Image.open(img_path), use_column_width=True)
|
216 |
+
st.write(f"Similarity: {sim:.2f}")
|
217 |
+
st.write(f"Image ID: {os.path.basename(img_path)}")
|
218 |
+
|
219 |
+
else:
|
220 |
+
st.info("No similar images found above the similarity threshold in the predicted class.")
|
221 |
+
|
222 |
+
if __name__ == "__main__":
|
223 |
+
main()
|