Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import torch | |
| import torch.nn as nn | |
| from torch.autograd import Function | |
| from torch.autograd.function import once_differentiable | |
| from torch.nn.modules.utils import _pair | |
| from ..utils import ext_loader | |
| ext_module = ext_loader.load_ext('_ext', | |
| ['roi_pool_forward', 'roi_pool_backward']) | |
| class RoIPoolFunction(Function): | |
| def symbolic(g, input, rois, output_size, spatial_scale): | |
| return g.op( | |
| 'MaxRoiPool', | |
| input, | |
| rois, | |
| pooled_shape_i=output_size, | |
| spatial_scale_f=spatial_scale) | |
| def forward(ctx, input, rois, output_size, spatial_scale=1.0): | |
| ctx.output_size = _pair(output_size) | |
| ctx.spatial_scale = spatial_scale | |
| ctx.input_shape = input.size() | |
| assert rois.size(1) == 5, 'RoI must be (idx, x1, y1, x2, y2)!' | |
| output_shape = (rois.size(0), input.size(1), ctx.output_size[0], | |
| ctx.output_size[1]) | |
| output = input.new_zeros(output_shape) | |
| argmax = input.new_zeros(output_shape, dtype=torch.int) | |
| ext_module.roi_pool_forward( | |
| input, | |
| rois, | |
| output, | |
| argmax, | |
| pooled_height=ctx.output_size[0], | |
| pooled_width=ctx.output_size[1], | |
| spatial_scale=ctx.spatial_scale) | |
| ctx.save_for_backward(rois, argmax) | |
| return output | |
| def backward(ctx, grad_output): | |
| rois, argmax = ctx.saved_tensors | |
| grad_input = grad_output.new_zeros(ctx.input_shape) | |
| ext_module.roi_pool_backward( | |
| grad_output, | |
| rois, | |
| argmax, | |
| grad_input, | |
| pooled_height=ctx.output_size[0], | |
| pooled_width=ctx.output_size[1], | |
| spatial_scale=ctx.spatial_scale) | |
| return grad_input, None, None, None | |
| roi_pool = RoIPoolFunction.apply | |
| class RoIPool(nn.Module): | |
| def __init__(self, output_size, spatial_scale=1.0): | |
| super(RoIPool, self).__init__() | |
| self.output_size = _pair(output_size) | |
| self.spatial_scale = float(spatial_scale) | |
| def forward(self, input, rois): | |
| return roi_pool(input, rois, self.output_size, self.spatial_scale) | |
| def __repr__(self): | |
| s = self.__class__.__name__ | |
| s += f'(output_size={self.output_size}, ' | |
| s += f'spatial_scale={self.spatial_scale})' | |
| return s | |