Spaces:
Runtime error
Runtime error
Duplicate from abhishek/sketch-to-image
Browse filesCo-authored-by: Abhishek Thakur <[email protected]>
This view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +35 -0
- .gitignore +3 -0
- README.md +13 -0
- __pycache__/config.cpython-310.pyc +0 -0
- __pycache__/model.cpython-310.pyc +0 -0
- __pycache__/utils.cpython-310.pyc +0 -0
- _app.py +1360 -0
- annotator/__pycache__/util.cpython-310.pyc +0 -0
- annotator/__pycache__/util.cpython-38.pyc +0 -0
- annotator/blur/__init__.py +7 -0
- annotator/blur/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/blur/__pycache__/__init__.cpython-38.pyc +0 -0
- annotator/canny/__init__.py +16 -0
- annotator/canny/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/canny/__pycache__/__init__.cpython-38.pyc +0 -0
- annotator/ckpts/ckpts.txt +1 -0
- annotator/grayscale/__init__.py +5 -0
- annotator/grayscale/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/grayscale/__pycache__/__init__.cpython-38.pyc +0 -0
- annotator/hed/__init__.py +107 -0
- annotator/hed/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/hed/__pycache__/__init__.cpython-38.pyc +0 -0
- annotator/inpainting/__init__.py +16 -0
- annotator/inpainting/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/inpainting/__pycache__/__init__.cpython-38.pyc +0 -0
- annotator/midas/LICENSE +21 -0
- annotator/midas/__init__.py +52 -0
- annotator/midas/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/midas/__pycache__/__init__.cpython-38.pyc +0 -0
- annotator/midas/__pycache__/api.cpython-310.pyc +0 -0
- annotator/midas/__pycache__/api.cpython-38.pyc +0 -0
- annotator/midas/api.py +183 -0
- annotator/midas/midas/__init__.py +0 -0
- annotator/midas/midas/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/__init__.cpython-38.pyc +0 -0
- annotator/midas/midas/__pycache__/base_model.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/base_model.cpython-38.pyc +0 -0
- annotator/midas/midas/__pycache__/blocks.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/blocks.cpython-38.pyc +0 -0
- annotator/midas/midas/__pycache__/dpt_depth.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/dpt_depth.cpython-38.pyc +0 -0
- annotator/midas/midas/__pycache__/midas_net.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/midas_net.cpython-38.pyc +0 -0
- annotator/midas/midas/__pycache__/midas_net_custom.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/midas_net_custom.cpython-38.pyc +0 -0
- annotator/midas/midas/__pycache__/transforms.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/transforms.cpython-38.pyc +0 -0
- annotator/midas/midas/__pycache__/vit.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/vit.cpython-38.pyc +0 -0
- annotator/midas/midas/base_model.py +26 -0
.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.pt
|
| 2 |
+
*.pth
|
| 3 |
+
*.st
|
README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Sketch To Image
|
| 3 |
+
emoji: 🎨
|
| 4 |
+
colorFrom: gray
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.39.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
duplicated_from: abhishek/sketch-to-image
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__pycache__/config.cpython-310.pyc
ADDED
|
Binary file (532 Bytes). View file
|
|
|
__pycache__/model.cpython-310.pyc
ADDED
|
Binary file (15.7 kB). View file
|
|
|
__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (4.46 kB). View file
|
|
|
_app.py
ADDED
|
@@ -0,0 +1,1360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
* Copyright (c) 2023 Salesforce, Inc.
|
| 3 |
+
* All rights reserved.
|
| 4 |
+
* SPDX-License-Identifier: Apache License 2.0
|
| 5 |
+
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
|
| 6 |
+
* By Can Qin
|
| 7 |
+
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
|
| 8 |
+
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
|
| 9 |
+
'''
|
| 10 |
+
|
| 11 |
+
import config
|
| 12 |
+
|
| 13 |
+
import cv2
|
| 14 |
+
import einops
|
| 15 |
+
import gradio as gr
|
| 16 |
+
import numpy as np
|
| 17 |
+
import torch
|
| 18 |
+
import random
|
| 19 |
+
import os
|
| 20 |
+
|
| 21 |
+
from pytorch_lightning import seed_everything
|
| 22 |
+
from annotator.util import resize_image, HWC3
|
| 23 |
+
from annotator.uniformer_base import UniformerDetector
|
| 24 |
+
from annotator.hed import HEDdetector
|
| 25 |
+
from annotator.canny import CannyDetector
|
| 26 |
+
from annotator.midas import MidasDetector
|
| 27 |
+
from annotator.outpainting import Outpainter
|
| 28 |
+
from annotator.openpose import OpenposeDetector
|
| 29 |
+
from annotator.inpainting import Inpainter
|
| 30 |
+
from annotator.grayscale import GrayscaleConverter
|
| 31 |
+
from annotator.blur import Blurrer
|
| 32 |
+
import cvlib as cv
|
| 33 |
+
|
| 34 |
+
from utils import create_model, load_state_dict
|
| 35 |
+
from lib.ddim_hacked import DDIMSampler
|
| 36 |
+
|
| 37 |
+
from safetensors.torch import load_file as stload
|
| 38 |
+
from collections import OrderedDict
|
| 39 |
+
|
| 40 |
+
apply_uniformer = UniformerDetector()
|
| 41 |
+
apply_midas = MidasDetector()
|
| 42 |
+
apply_canny = CannyDetector()
|
| 43 |
+
apply_hed = HEDdetector()
|
| 44 |
+
model_outpainting = Outpainter()
|
| 45 |
+
apply_openpose = OpenposeDetector()
|
| 46 |
+
model_grayscale = GrayscaleConverter()
|
| 47 |
+
model_blur = Blurrer()
|
| 48 |
+
model_inpainting = Inpainter()
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def midas(img, res):
|
| 52 |
+
img = resize_image(HWC3(img), res)
|
| 53 |
+
results = apply_midas(img)
|
| 54 |
+
return results
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def outpainting(img, res, height_top_extended, height_down_extended, width_left_extended, width_right_extended):
|
| 58 |
+
img = resize_image(HWC3(img), res)
|
| 59 |
+
result = model_outpainting(img, height_top_extended, height_down_extended, width_left_extended, width_right_extended)
|
| 60 |
+
return result
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def grayscale(img, res):
|
| 64 |
+
img = resize_image(HWC3(img), res)
|
| 65 |
+
result = model_grayscale(img)
|
| 66 |
+
return result
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def blur(img, res, ksize):
|
| 70 |
+
img = resize_image(HWC3(img), res)
|
| 71 |
+
result = model_blur(img, ksize)
|
| 72 |
+
return result
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def inpainting(img, res, height_top_mask, height_down_mask, width_left_mask, width_right_mask):
|
| 76 |
+
img = resize_image(HWC3(img), res)
|
| 77 |
+
result = model_inpainting(img, height_top_mask, height_down_mask, width_left_mask, width_right_mask)
|
| 78 |
+
return result
|
| 79 |
+
|
| 80 |
+
model = create_model('./models/cldm_v15_unicontrol.yaml').cpu()
|
| 81 |
+
# model_url = 'https://huggingface.co/Robert001/UniControl-Model/resolve/main/unicontrol_v1.1.ckpt'
|
| 82 |
+
model_url = 'https://huggingface.co/Robert001/UniControl-Model/resolve/main/unicontrol_v1.1.st'
|
| 83 |
+
|
| 84 |
+
ckpts_path='./'
|
| 85 |
+
# model_path = os.path.join(ckpts_path, "unicontrol_v1.1.ckpt")
|
| 86 |
+
model_path = os.path.join(ckpts_path, "unicontrol_v1.1.st")
|
| 87 |
+
|
| 88 |
+
if not os.path.exists(model_path):
|
| 89 |
+
from basicsr.utils.download_util import load_file_from_url
|
| 90 |
+
load_file_from_url(model_url, model_dir=ckpts_path)
|
| 91 |
+
|
| 92 |
+
model_dict = OrderedDict(stload(model_path, device='cpu'))
|
| 93 |
+
model.load_state_dict(model_dict, strict=False)
|
| 94 |
+
# model.load_state_dict(load_state_dict(model_path, location='cuda'), strict=False)
|
| 95 |
+
model = model.cuda()
|
| 96 |
+
ddim_sampler = DDIMSampler(model)
|
| 97 |
+
|
| 98 |
+
task_to_name = {'hed': 'control_hed', 'canny': 'control_canny', 'seg': 'control_seg', 'segbase': 'control_seg',
|
| 99 |
+
'depth': 'control_depth', 'normal': 'control_normal', 'openpose': 'control_openpose',
|
| 100 |
+
'bbox': 'control_bbox', 'grayscale': 'control_grayscale', 'outpainting': 'control_outpainting',
|
| 101 |
+
'hedsketch': 'control_hedsketch', 'inpainting': 'control_inpainting', 'blur': 'control_blur',
|
| 102 |
+
'grayscale': 'control_grayscale'}
|
| 103 |
+
|
| 104 |
+
name_to_instruction = {"control_hed": "hed edge to image", "control_canny": "canny edge to image",
|
| 105 |
+
"control_seg": "segmentation map to image", "control_depth": "depth map to image",
|
| 106 |
+
"control_normal": "normal surface map to image", "control_img": "image editing",
|
| 107 |
+
"control_openpose": "human pose skeleton to image", "control_hedsketch": "sketch to image",
|
| 108 |
+
"control_bbox": "bounding box to image", "control_outpainting": "image outpainting",
|
| 109 |
+
"control_grayscale": "gray image to color image", "control_blur": "deblur image to clean image",
|
| 110 |
+
"control_inpainting": "image inpainting"}
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
| 114 |
+
strength, scale, seed, eta, low_threshold, high_threshold, condition_mode):
|
| 115 |
+
with torch.no_grad():
|
| 116 |
+
img = resize_image(HWC3(input_image), image_resolution)
|
| 117 |
+
H, W, C = img.shape
|
| 118 |
+
if condition_mode == True:
|
| 119 |
+
detected_map = apply_canny(img, low_threshold, high_threshold)
|
| 120 |
+
detected_map = HWC3(detected_map)
|
| 121 |
+
else:
|
| 122 |
+
detected_map = 255 - img
|
| 123 |
+
|
| 124 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 125 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 126 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 127 |
+
|
| 128 |
+
if seed == -1:
|
| 129 |
+
seed = random.randint(0, 65535)
|
| 130 |
+
seed_everything(seed)
|
| 131 |
+
|
| 132 |
+
if config.save_memory:
|
| 133 |
+
model.low_vram_shift(is_diffusing=False)
|
| 134 |
+
task = 'canny'
|
| 135 |
+
task_dic = {}
|
| 136 |
+
task_dic['name'] = task_to_name[task]
|
| 137 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
| 138 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
| 139 |
+
|
| 140 |
+
cond = {"c_concat": [control],
|
| 141 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 142 |
+
"task": task_dic}
|
| 143 |
+
|
| 144 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 145 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 146 |
+
shape = (4, H // 8, W // 8)
|
| 147 |
+
|
| 148 |
+
if config.save_memory:
|
| 149 |
+
model.low_vram_shift(is_diffusing=True)
|
| 150 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13)
|
| 151 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 152 |
+
shape, cond, verbose=False, eta=eta,
|
| 153 |
+
unconditional_guidance_scale=scale,
|
| 154 |
+
unconditional_conditioning=un_cond)
|
| 155 |
+
|
| 156 |
+
if config.save_memory:
|
| 157 |
+
model.low_vram_shift(is_diffusing=False)
|
| 158 |
+
|
| 159 |
+
x_samples = model.decode_first_stage(samples)
|
| 160 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
| 161 |
+
255).astype(
|
| 162 |
+
np.uint8)
|
| 163 |
+
|
| 164 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 165 |
+
return [255 - detected_map] + results
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def process_hed(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps,
|
| 169 |
+
guess_mode, strength, scale, seed, eta, condition_mode):
|
| 170 |
+
with torch.no_grad():
|
| 171 |
+
input_image = HWC3(input_image)
|
| 172 |
+
img = resize_image(input_image, image_resolution)
|
| 173 |
+
H, W, C = img.shape
|
| 174 |
+
if condition_mode == True:
|
| 175 |
+
detected_map = apply_hed(resize_image(input_image, detect_resolution))
|
| 176 |
+
detected_map = HWC3(detected_map)
|
| 177 |
+
else:
|
| 178 |
+
detected_map = img
|
| 179 |
+
|
| 180 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 181 |
+
|
| 182 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 183 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 184 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 185 |
+
|
| 186 |
+
if seed == -1:
|
| 187 |
+
seed = random.randint(0, 65535)
|
| 188 |
+
seed_everything(seed)
|
| 189 |
+
|
| 190 |
+
if config.save_memory:
|
| 191 |
+
model.low_vram_shift(is_diffusing=False)
|
| 192 |
+
|
| 193 |
+
task = 'hed'
|
| 194 |
+
task_dic = {}
|
| 195 |
+
task_dic['name'] = task_to_name[task]
|
| 196 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
| 197 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
| 198 |
+
|
| 199 |
+
cond = {"c_concat": [control],
|
| 200 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 201 |
+
"task": task_dic}
|
| 202 |
+
|
| 203 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 204 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 205 |
+
shape = (4, H // 8, W // 8)
|
| 206 |
+
|
| 207 |
+
if config.save_memory:
|
| 208 |
+
model.low_vram_shift(is_diffusing=True)
|
| 209 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13)
|
| 210 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 211 |
+
shape, cond, verbose=False, eta=eta,
|
| 212 |
+
unconditional_guidance_scale=scale,
|
| 213 |
+
unconditional_conditioning=un_cond)
|
| 214 |
+
|
| 215 |
+
if config.save_memory:
|
| 216 |
+
model.low_vram_shift(is_diffusing=False)
|
| 217 |
+
|
| 218 |
+
x_samples = model.decode_first_stage(samples)
|
| 219 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
| 220 |
+
255).astype(
|
| 221 |
+
np.uint8)
|
| 222 |
+
|
| 223 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 224 |
+
return [detected_map] + results
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def process_depth(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps,
|
| 228 |
+
guess_mode, strength, scale, seed, eta, condition_mode):
|
| 229 |
+
with torch.no_grad():
|
| 230 |
+
input_image = HWC3(input_image)
|
| 231 |
+
img = resize_image(input_image, image_resolution)
|
| 232 |
+
H, W, C = img.shape
|
| 233 |
+
if condition_mode == True:
|
| 234 |
+
detected_map, _ = apply_midas(resize_image(input_image, detect_resolution))
|
| 235 |
+
detected_map = HWC3(detected_map)
|
| 236 |
+
else:
|
| 237 |
+
detected_map = img
|
| 238 |
+
|
| 239 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 240 |
+
|
| 241 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 242 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 243 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 244 |
+
|
| 245 |
+
if seed == -1:
|
| 246 |
+
seed = random.randint(0, 65535)
|
| 247 |
+
seed_everything(seed)
|
| 248 |
+
|
| 249 |
+
if config.save_memory:
|
| 250 |
+
model.low_vram_shift(is_diffusing=False)
|
| 251 |
+
task = 'depth'
|
| 252 |
+
task_dic = {}
|
| 253 |
+
task_dic['name'] = task_to_name[task]
|
| 254 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
| 255 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
| 256 |
+
cond = {"c_concat": [control],
|
| 257 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 258 |
+
"task": task_dic}
|
| 259 |
+
|
| 260 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 261 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 262 |
+
shape = (4, H // 8, W // 8)
|
| 263 |
+
|
| 264 |
+
if config.save_memory:
|
| 265 |
+
model.low_vram_shift(is_diffusing=True)
|
| 266 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
| 267 |
+
[strength] * 13)
|
| 268 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 269 |
+
shape, cond, verbose=False, eta=eta,
|
| 270 |
+
unconditional_guidance_scale=scale,
|
| 271 |
+
unconditional_conditioning=un_cond)
|
| 272 |
+
|
| 273 |
+
if config.save_memory:
|
| 274 |
+
model.low_vram_shift(is_diffusing=False)
|
| 275 |
+
|
| 276 |
+
x_samples = model.decode_first_stage(samples)
|
| 277 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
| 278 |
+
255).astype(
|
| 279 |
+
np.uint8)
|
| 280 |
+
|
| 281 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 282 |
+
return [detected_map] + results
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
def process_normal(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
|
| 286 |
+
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode):
|
| 287 |
+
with torch.no_grad():
|
| 288 |
+
|
| 289 |
+
input_image = HWC3(input_image)
|
| 290 |
+
img = resize_image(input_image, image_resolution)
|
| 291 |
+
H, W, C = img.shape
|
| 292 |
+
if condition_mode == True:
|
| 293 |
+
_, detected_map = apply_midas(resize_image(input_image, detect_resolution))
|
| 294 |
+
detected_map = HWC3(detected_map)
|
| 295 |
+
else:
|
| 296 |
+
detected_map = img
|
| 297 |
+
|
| 298 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 299 |
+
|
| 300 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 301 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 302 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 303 |
+
|
| 304 |
+
if seed == -1:
|
| 305 |
+
seed = random.randint(0, 65535)
|
| 306 |
+
seed_everything(seed)
|
| 307 |
+
|
| 308 |
+
if config.save_memory:
|
| 309 |
+
model.low_vram_shift(is_diffusing=False)
|
| 310 |
+
task = 'normal'
|
| 311 |
+
task_dic = {}
|
| 312 |
+
task_dic['name'] = task_to_name[task]
|
| 313 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
| 314 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
| 315 |
+
cond = {"c_concat": [control],
|
| 316 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 317 |
+
"task": task_dic}
|
| 318 |
+
|
| 319 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 320 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 321 |
+
shape = (4, H // 8, W // 8)
|
| 322 |
+
|
| 323 |
+
if config.save_memory:
|
| 324 |
+
model.low_vram_shift(is_diffusing=True)
|
| 325 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
| 326 |
+
[strength] * 13)
|
| 327 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 328 |
+
shape, cond, verbose=False, eta=eta,
|
| 329 |
+
unconditional_guidance_scale=scale,
|
| 330 |
+
unconditional_conditioning=un_cond)
|
| 331 |
+
|
| 332 |
+
if config.save_memory:
|
| 333 |
+
model.low_vram_shift(is_diffusing=False)
|
| 334 |
+
|
| 335 |
+
x_samples = model.decode_first_stage(samples)
|
| 336 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
| 337 |
+
255).astype(
|
| 338 |
+
np.uint8)
|
| 339 |
+
|
| 340 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 341 |
+
return [detected_map] + results
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
def process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps,
|
| 345 |
+
guess_mode, strength, scale, seed, eta, condition_mode):
|
| 346 |
+
with torch.no_grad():
|
| 347 |
+
input_image = HWC3(input_image)
|
| 348 |
+
img = resize_image(input_image, image_resolution)
|
| 349 |
+
H, W, C = img.shape
|
| 350 |
+
if condition_mode == True:
|
| 351 |
+
detected_map, _ = apply_openpose(resize_image(input_image, detect_resolution))
|
| 352 |
+
detected_map = HWC3(detected_map)
|
| 353 |
+
else:
|
| 354 |
+
detected_map = img
|
| 355 |
+
|
| 356 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
|
| 357 |
+
|
| 358 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 359 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 360 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 361 |
+
|
| 362 |
+
if seed == -1:
|
| 363 |
+
seed = random.randint(0, 65535)
|
| 364 |
+
seed_everything(seed)
|
| 365 |
+
|
| 366 |
+
if config.save_memory:
|
| 367 |
+
model.low_vram_shift(is_diffusing=False)
|
| 368 |
+
task = 'openpose'
|
| 369 |
+
task_dic = {}
|
| 370 |
+
task_dic['name'] = task_to_name[task]
|
| 371 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
| 372 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
| 373 |
+
cond = {"c_concat": [control],
|
| 374 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 375 |
+
"task": task_dic}
|
| 376 |
+
|
| 377 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 378 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 379 |
+
shape = (4, H // 8, W // 8)
|
| 380 |
+
|
| 381 |
+
if config.save_memory:
|
| 382 |
+
model.low_vram_shift(is_diffusing=True)
|
| 383 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
| 384 |
+
[strength] * 13)
|
| 385 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 386 |
+
shape, cond, verbose=False, eta=eta,
|
| 387 |
+
unconditional_guidance_scale=scale,
|
| 388 |
+
unconditional_conditioning=un_cond)
|
| 389 |
+
|
| 390 |
+
if config.save_memory:
|
| 391 |
+
model.low_vram_shift(is_diffusing=False)
|
| 392 |
+
|
| 393 |
+
x_samples = model.decode_first_stage(samples)
|
| 394 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
| 395 |
+
255).astype(
|
| 396 |
+
np.uint8)
|
| 397 |
+
|
| 398 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 399 |
+
return [detected_map] + results
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
def process_seg(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps,
|
| 403 |
+
guess_mode, strength, scale, seed, eta, condition_mode):
|
| 404 |
+
with torch.no_grad():
|
| 405 |
+
input_image = HWC3(input_image)
|
| 406 |
+
img = resize_image(input_image, image_resolution)
|
| 407 |
+
H, W, C = img.shape
|
| 408 |
+
|
| 409 |
+
if condition_mode == True:
|
| 410 |
+
detected_map = apply_uniformer(resize_image(input_image, detect_resolution))
|
| 411 |
+
else:
|
| 412 |
+
detected_map = img
|
| 413 |
+
|
| 414 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
|
| 415 |
+
|
| 416 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 417 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 418 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 419 |
+
|
| 420 |
+
if seed == -1:
|
| 421 |
+
seed = random.randint(0, 65535)
|
| 422 |
+
seed_everything(seed)
|
| 423 |
+
|
| 424 |
+
if config.save_memory:
|
| 425 |
+
model.low_vram_shift(is_diffusing=False)
|
| 426 |
+
task = 'seg'
|
| 427 |
+
task_dic = {}
|
| 428 |
+
task_dic['name'] = task_to_name[task]
|
| 429 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
| 430 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
| 431 |
+
|
| 432 |
+
cond = {"c_concat": [control],
|
| 433 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 434 |
+
"task": task_dic}
|
| 435 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 436 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 437 |
+
shape = (4, H // 8, W // 8)
|
| 438 |
+
|
| 439 |
+
if config.save_memory:
|
| 440 |
+
model.low_vram_shift(is_diffusing=True)
|
| 441 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
| 442 |
+
[strength] * 13)
|
| 443 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 444 |
+
shape, cond, verbose=False, eta=eta,
|
| 445 |
+
unconditional_guidance_scale=scale,
|
| 446 |
+
unconditional_conditioning=un_cond)
|
| 447 |
+
|
| 448 |
+
if config.save_memory:
|
| 449 |
+
model.low_vram_shift(is_diffusing=False)
|
| 450 |
+
|
| 451 |
+
x_samples = model.decode_first_stage(samples)
|
| 452 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
| 453 |
+
255).astype(
|
| 454 |
+
np.uint8)
|
| 455 |
+
|
| 456 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 457 |
+
return [detected_map] + results
|
| 458 |
+
|
| 459 |
+
|
| 460 |
+
color_dict = {
|
| 461 |
+
'background': (0, 0, 100),
|
| 462 |
+
'person': (255, 0, 0),
|
| 463 |
+
'bicycle': (0, 255, 0),
|
| 464 |
+
'car': (0, 0, 255),
|
| 465 |
+
'motorcycle': (255, 255, 0),
|
| 466 |
+
'airplane': (255, 0, 255),
|
| 467 |
+
'bus': (0, 255, 255),
|
| 468 |
+
'train': (128, 128, 0),
|
| 469 |
+
'truck': (128, 0, 128),
|
| 470 |
+
'boat': (0, 128, 128),
|
| 471 |
+
'traffic light': (128, 128, 128),
|
| 472 |
+
'fire hydrant': (64, 0, 0),
|
| 473 |
+
'stop sign': (0, 64, 0),
|
| 474 |
+
'parking meter': (0, 0, 64),
|
| 475 |
+
'bench': (64, 64, 0),
|
| 476 |
+
'bird': (64, 0, 64),
|
| 477 |
+
'cat': (0, 64, 64),
|
| 478 |
+
'dog': (192, 192, 192),
|
| 479 |
+
'horse': (32, 32, 32),
|
| 480 |
+
'sheep': (96, 96, 96),
|
| 481 |
+
'cow': (160, 160, 160),
|
| 482 |
+
'elephant': (224, 224, 224),
|
| 483 |
+
'bear': (32, 0, 0),
|
| 484 |
+
'zebra': (0, 32, 0),
|
| 485 |
+
'giraffe': (0, 0, 32),
|
| 486 |
+
'backpack': (32, 32, 0),
|
| 487 |
+
'umbrella': (32, 0, 32),
|
| 488 |
+
'handbag': (0, 32, 32),
|
| 489 |
+
'tie': (96, 0, 0),
|
| 490 |
+
'suitcase': (0, 96, 0),
|
| 491 |
+
'frisbee': (0, 0, 96),
|
| 492 |
+
'skis': (96, 96, 0),
|
| 493 |
+
'snowboard': (96, 0, 96),
|
| 494 |
+
'sports ball': (0, 96, 96),
|
| 495 |
+
'kite': (160, 0, 0),
|
| 496 |
+
'baseball bat': (0, 160, 0),
|
| 497 |
+
'baseball glove': (0, 0, 160),
|
| 498 |
+
'skateboard': (160, 160, 0),
|
| 499 |
+
'surfboard': (160, 0, 160),
|
| 500 |
+
'tennis racket': (0, 160, 160),
|
| 501 |
+
'bottle': (224, 0, 0),
|
| 502 |
+
'wine glass': (0, 224, 0),
|
| 503 |
+
'cup': (0, 0, 224),
|
| 504 |
+
'fork': (224, 224, 0),
|
| 505 |
+
'knife': (224, 0, 224),
|
| 506 |
+
'spoon': (0, 224, 224),
|
| 507 |
+
'bowl': (64, 64, 64),
|
| 508 |
+
'banana': (128, 64, 64),
|
| 509 |
+
'apple': (64, 128, 64),
|
| 510 |
+
'sandwich': (64, 64, 128),
|
| 511 |
+
'orange': (128, 128, 64),
|
| 512 |
+
'broccoli': (128, 64, 128),
|
| 513 |
+
'carrot': (64, 128, 128),
|
| 514 |
+
'hot dog': (192, 64, 64),
|
| 515 |
+
'pizza': (64, 192, 64),
|
| 516 |
+
'donut': (64, 64, 192),
|
| 517 |
+
'cake': (192, 192, 64),
|
| 518 |
+
'chair': (192, 64, 192),
|
| 519 |
+
'couch': (64, 192, 192),
|
| 520 |
+
'potted plant': (96, 32, 32),
|
| 521 |
+
'bed': (32, 96, 32),
|
| 522 |
+
'dining table': (32, 32, 96),
|
| 523 |
+
'toilet': (96, 96, 32),
|
| 524 |
+
'tv': (96, 32, 96),
|
| 525 |
+
'laptop': (32, 96, 96),
|
| 526 |
+
'mouse': (160, 32, 32),
|
| 527 |
+
'remote': (32, 160, 32),
|
| 528 |
+
'keyboard': (32, 32, 160),
|
| 529 |
+
'cell phone': (160, 160, 32),
|
| 530 |
+
'microwave': (160, 32, 160),
|
| 531 |
+
'oven': (32, 160, 160),
|
| 532 |
+
'toaster': (224, 32, 32),
|
| 533 |
+
'sink': (32, 224, 32),
|
| 534 |
+
'refrigerator': (32, 32, 224),
|
| 535 |
+
'book': (224, 224, 32),
|
| 536 |
+
'clock': (224, 32, 224),
|
| 537 |
+
'vase': (32, 224, 224),
|
| 538 |
+
'scissors': (64, 96, 96),
|
| 539 |
+
'teddy bear': (96, 64, 96),
|
| 540 |
+
'hair drier': (96, 96, 64),
|
| 541 |
+
'toothbrush': (160, 96, 96)
|
| 542 |
+
}
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
def process_bbox(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
| 546 |
+
strength, scale, seed, eta, confidence, nms_thresh, condition_mode):
|
| 547 |
+
with torch.no_grad():
|
| 548 |
+
input_image = HWC3(input_image)
|
| 549 |
+
img = resize_image(input_image, image_resolution)
|
| 550 |
+
H, W, C = img.shape
|
| 551 |
+
|
| 552 |
+
if condition_mode == True:
|
| 553 |
+
bbox, label, conf = cv.detect_common_objects(input_image, confidence=confidence, nms_thresh=nms_thresh)
|
| 554 |
+
mask = np.zeros((input_image.shape), np.uint8)
|
| 555 |
+
if len(bbox) > 0:
|
| 556 |
+
order_area = np.zeros(len(bbox))
|
| 557 |
+
# order_final = np.arange(len(bbox))
|
| 558 |
+
area_all = 0
|
| 559 |
+
for idx_mask, box in enumerate(bbox):
|
| 560 |
+
x_1, y_1, x_2, y_2 = box
|
| 561 |
+
|
| 562 |
+
x_1 = 0 if x_1 < 0 else x_1
|
| 563 |
+
y_1 = 0 if y_1 < 0 else y_1
|
| 564 |
+
x_2 = input_image.shape[1] if x_2 < 0 else x_2
|
| 565 |
+
y_2 = input_image.shape[0] if y_2 < 0 else y_2
|
| 566 |
+
|
| 567 |
+
area = (x_2 - x_1) * (y_2 - y_1)
|
| 568 |
+
order_area[idx_mask] = area
|
| 569 |
+
area_all += area
|
| 570 |
+
ordered_area = np.argsort(-order_area)
|
| 571 |
+
|
| 572 |
+
for idx_mask in ordered_area:
|
| 573 |
+
box = bbox[idx_mask]
|
| 574 |
+
x_1, y_1, x_2, y_2 = box
|
| 575 |
+
x_1 = 0 if x_1 < 0 else x_1
|
| 576 |
+
y_1 = 0 if y_1 < 0 else y_1
|
| 577 |
+
x_2 = input_image.shape[1] if x_2 < 0 else x_2
|
| 578 |
+
y_2 = input_image.shape[0] if y_2 < 0 else y_2
|
| 579 |
+
|
| 580 |
+
mask[y_1:y_2, x_1:x_2, :] = color_dict[label[idx_mask]]
|
| 581 |
+
detected_map = mask
|
| 582 |
+
else:
|
| 583 |
+
detected_map = img
|
| 584 |
+
|
| 585 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 586 |
+
|
| 587 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 588 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 589 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 590 |
+
|
| 591 |
+
if seed == -1:
|
| 592 |
+
seed = random.randint(0, 65535)
|
| 593 |
+
seed_everything(seed)
|
| 594 |
+
|
| 595 |
+
if config.save_memory:
|
| 596 |
+
model.low_vram_shift(is_diffusing=False)
|
| 597 |
+
|
| 598 |
+
task = 'bbox'
|
| 599 |
+
task_dic = {}
|
| 600 |
+
task_dic['name'] = task_to_name[task]
|
| 601 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
| 602 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
| 603 |
+
|
| 604 |
+
cond = {"c_concat": [control],
|
| 605 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 606 |
+
"task": task_dic}
|
| 607 |
+
|
| 608 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 609 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 610 |
+
shape = (4, H // 8, W // 8)
|
| 611 |
+
|
| 612 |
+
if config.save_memory:
|
| 613 |
+
model.low_vram_shift(is_diffusing=True)
|
| 614 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
| 615 |
+
[strength] * 13)
|
| 616 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 617 |
+
shape, cond, verbose=False, eta=eta,
|
| 618 |
+
unconditional_guidance_scale=scale,
|
| 619 |
+
unconditional_conditioning=un_cond)
|
| 620 |
+
|
| 621 |
+
if config.save_memory:
|
| 622 |
+
model.low_vram_shift(is_diffusing=False)
|
| 623 |
+
|
| 624 |
+
x_samples = model.decode_first_stage(samples)
|
| 625 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
| 626 |
+
255).astype(
|
| 627 |
+
np.uint8)
|
| 628 |
+
|
| 629 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 630 |
+
return [detected_map] + results
|
| 631 |
+
|
| 632 |
+
|
| 633 |
+
def process_outpainting(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
| 634 |
+
strength, scale, seed, eta, height_top_extended, height_down_extended, width_left_extended, width_right_extended, condition_mode):
|
| 635 |
+
with torch.no_grad():
|
| 636 |
+
input_image = HWC3(input_image)
|
| 637 |
+
img = resize_image(input_image, image_resolution)
|
| 638 |
+
H, W, C = img.shape
|
| 639 |
+
if condition_mode == True:
|
| 640 |
+
detected_map = outpainting(input_image, image_resolution, height_top_extended, height_down_extended, width_left_extended, width_right_extended)
|
| 641 |
+
else:
|
| 642 |
+
detected_map = img
|
| 643 |
+
|
| 644 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 645 |
+
|
| 646 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 647 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 648 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 649 |
+
|
| 650 |
+
if seed == -1:
|
| 651 |
+
seed = random.randint(0, 65535)
|
| 652 |
+
seed_everything(seed)
|
| 653 |
+
|
| 654 |
+
if config.save_memory:
|
| 655 |
+
model.low_vram_shift(is_diffusing=False)
|
| 656 |
+
|
| 657 |
+
task = 'outpainting'
|
| 658 |
+
task_dic = {}
|
| 659 |
+
task_dic['name'] = task_to_name[task]
|
| 660 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
| 661 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
| 662 |
+
|
| 663 |
+
cond = {"c_concat": [control],
|
| 664 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 665 |
+
"task": task_dic}
|
| 666 |
+
|
| 667 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 668 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 669 |
+
shape = (4, H // 8, W // 8)
|
| 670 |
+
|
| 671 |
+
if config.save_memory:
|
| 672 |
+
model.low_vram_shift(is_diffusing=True)
|
| 673 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
| 674 |
+
[strength] * 13)
|
| 675 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 676 |
+
shape, cond, verbose=False, eta=eta,
|
| 677 |
+
unconditional_guidance_scale=scale,
|
| 678 |
+
unconditional_conditioning=un_cond)
|
| 679 |
+
|
| 680 |
+
if config.save_memory:
|
| 681 |
+
model.low_vram_shift(is_diffusing=False)
|
| 682 |
+
|
| 683 |
+
x_samples = model.decode_first_stage(samples)
|
| 684 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
| 685 |
+
255).astype(
|
| 686 |
+
np.uint8)
|
| 687 |
+
|
| 688 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 689 |
+
return [detected_map] + results
|
| 690 |
+
|
| 691 |
+
|
| 692 |
+
def process_sketch(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
|
| 693 |
+
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode):
|
| 694 |
+
with torch.no_grad():
|
| 695 |
+
input_image = HWC3(input_image)
|
| 696 |
+
img = resize_image(input_image, image_resolution)
|
| 697 |
+
H, W, C = img.shape
|
| 698 |
+
|
| 699 |
+
if condition_mode == True:
|
| 700 |
+
detected_map = apply_hed(resize_image(input_image, detect_resolution))
|
| 701 |
+
detected_map = HWC3(detected_map)
|
| 702 |
+
|
| 703 |
+
# sketch the hed image
|
| 704 |
+
retry = 0
|
| 705 |
+
cnt = 0
|
| 706 |
+
while retry == 0:
|
| 707 |
+
threshold_value = np.random.randint(110, 160)
|
| 708 |
+
kernel_size = 3
|
| 709 |
+
alpha = 1.5
|
| 710 |
+
beta = 50
|
| 711 |
+
binary_image = cv2.threshold(detected_map, threshold_value, 255, cv2.THRESH_BINARY)[1]
|
| 712 |
+
inverted_image = cv2.bitwise_not(binary_image)
|
| 713 |
+
smoothed_image = cv2.GaussianBlur(inverted_image, (kernel_size, kernel_size), 0)
|
| 714 |
+
sketch_image = cv2.convertScaleAbs(smoothed_image, alpha=alpha, beta=beta)
|
| 715 |
+
if np.sum(sketch_image < 5) > 0.005 * sketch_image.shape[0] * sketch_image.shape[1] or cnt == 5:
|
| 716 |
+
retry = 1
|
| 717 |
+
else:
|
| 718 |
+
cnt += 1
|
| 719 |
+
detected_map = sketch_image
|
| 720 |
+
else:
|
| 721 |
+
detected_map = img
|
| 722 |
+
|
| 723 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 724 |
+
|
| 725 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 726 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 727 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 728 |
+
|
| 729 |
+
if seed == -1:
|
| 730 |
+
seed = random.randint(0, 65535)
|
| 731 |
+
seed_everything(seed)
|
| 732 |
+
|
| 733 |
+
if config.save_memory:
|
| 734 |
+
model.low_vram_shift(is_diffusing=False)
|
| 735 |
+
|
| 736 |
+
task = 'hedsketch'
|
| 737 |
+
task_dic = {}
|
| 738 |
+
task_dic['name'] = task_to_name[task]
|
| 739 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
| 740 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
| 741 |
+
|
| 742 |
+
cond = {"c_concat": [control],
|
| 743 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 744 |
+
"task": task_dic}
|
| 745 |
+
|
| 746 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 747 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 748 |
+
shape = (4, H // 8, W // 8)
|
| 749 |
+
|
| 750 |
+
if config.save_memory:
|
| 751 |
+
model.low_vram_shift(is_diffusing=True)
|
| 752 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
| 753 |
+
[strength] * 13)
|
| 754 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 755 |
+
shape, cond, verbose=False, eta=eta,
|
| 756 |
+
unconditional_guidance_scale=scale,
|
| 757 |
+
unconditional_conditioning=un_cond)
|
| 758 |
+
|
| 759 |
+
if config.save_memory:
|
| 760 |
+
model.low_vram_shift(is_diffusing=False)
|
| 761 |
+
|
| 762 |
+
x_samples = model.decode_first_stage(samples)
|
| 763 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
| 764 |
+
255).astype(
|
| 765 |
+
np.uint8)
|
| 766 |
+
|
| 767 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 768 |
+
return [detected_map] + results
|
| 769 |
+
|
| 770 |
+
|
| 771 |
+
def process_colorization(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
| 772 |
+
strength, scale, seed, eta, condition_mode):
|
| 773 |
+
with torch.no_grad():
|
| 774 |
+
input_image = HWC3(input_image)
|
| 775 |
+
img = resize_image(input_image, image_resolution)
|
| 776 |
+
H, W, C = img.shape
|
| 777 |
+
if condition_mode == True:
|
| 778 |
+
detected_map = grayscale(input_image, image_resolution)
|
| 779 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 780 |
+
detected_map = detected_map[:, :, np.newaxis]
|
| 781 |
+
detected_map = detected_map.repeat(3, axis=2)
|
| 782 |
+
else:
|
| 783 |
+
detected_map = img
|
| 784 |
+
|
| 785 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 786 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 787 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 788 |
+
|
| 789 |
+
if seed == -1:
|
| 790 |
+
seed = random.randint(0, 65535)
|
| 791 |
+
seed_everything(seed)
|
| 792 |
+
|
| 793 |
+
if config.save_memory:
|
| 794 |
+
model.low_vram_shift(is_diffusing=False)
|
| 795 |
+
|
| 796 |
+
task = 'grayscale'
|
| 797 |
+
task_dic = {}
|
| 798 |
+
task_dic['name'] = task_to_name[task]
|
| 799 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
| 800 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
| 801 |
+
|
| 802 |
+
cond = {"c_concat": [control],
|
| 803 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 804 |
+
"task": task_dic}
|
| 805 |
+
|
| 806 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 807 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 808 |
+
shape = (4, H // 8, W // 8)
|
| 809 |
+
|
| 810 |
+
if config.save_memory:
|
| 811 |
+
model.low_vram_shift(is_diffusing=True)
|
| 812 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
| 813 |
+
[strength] * 13)
|
| 814 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 815 |
+
shape, cond, verbose=False, eta=eta,
|
| 816 |
+
unconditional_guidance_scale=scale,
|
| 817 |
+
unconditional_conditioning=un_cond)
|
| 818 |
+
|
| 819 |
+
if config.save_memory:
|
| 820 |
+
model.low_vram_shift(is_diffusing=False)
|
| 821 |
+
|
| 822 |
+
x_samples = model.decode_first_stage(samples)
|
| 823 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
| 824 |
+
255).astype(
|
| 825 |
+
np.uint8)
|
| 826 |
+
|
| 827 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 828 |
+
return [detected_map] + results
|
| 829 |
+
|
| 830 |
+
|
| 831 |
+
def process_deblur(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
| 832 |
+
strength, scale, seed, eta, ksize, condition_mode):
|
| 833 |
+
with torch.no_grad():
|
| 834 |
+
input_image = HWC3(input_image)
|
| 835 |
+
img = resize_image(input_image, image_resolution)
|
| 836 |
+
H, W, C = img.shape
|
| 837 |
+
if condition_mode == True:
|
| 838 |
+
detected_map = blur(input_image, image_resolution, ksize)
|
| 839 |
+
else:
|
| 840 |
+
detected_map = img
|
| 841 |
+
|
| 842 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 843 |
+
|
| 844 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 845 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 846 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 847 |
+
|
| 848 |
+
if seed == -1:
|
| 849 |
+
seed = random.randint(0, 65535)
|
| 850 |
+
seed_everything(seed)
|
| 851 |
+
|
| 852 |
+
if config.save_memory:
|
| 853 |
+
model.low_vram_shift(is_diffusing=False)
|
| 854 |
+
|
| 855 |
+
task = 'blur'
|
| 856 |
+
task_dic = {}
|
| 857 |
+
task_dic['name'] = task_to_name[task]
|
| 858 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
| 859 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
| 860 |
+
|
| 861 |
+
cond = {"c_concat": [control],
|
| 862 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 863 |
+
"task": task_dic}
|
| 864 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 865 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 866 |
+
shape = (4, H // 8, W // 8)
|
| 867 |
+
|
| 868 |
+
if config.save_memory:
|
| 869 |
+
model.low_vram_shift(is_diffusing=True)
|
| 870 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
| 871 |
+
[strength] * 13)
|
| 872 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 873 |
+
shape, cond, verbose=False, eta=eta,
|
| 874 |
+
unconditional_guidance_scale=scale,
|
| 875 |
+
unconditional_conditioning=un_cond)
|
| 876 |
+
|
| 877 |
+
if config.save_memory:
|
| 878 |
+
model.low_vram_shift(is_diffusing=False)
|
| 879 |
+
|
| 880 |
+
x_samples = model.decode_first_stage(samples)
|
| 881 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
| 882 |
+
255).astype(
|
| 883 |
+
np.uint8)
|
| 884 |
+
|
| 885 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 886 |
+
return [detected_map] + results
|
| 887 |
+
|
| 888 |
+
|
| 889 |
+
def process_inpainting(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
| 890 |
+
strength, scale, seed, eta, h_ratio_t, h_ratio_d, w_ratio_l, w_ratio_r, condition_mode):
|
| 891 |
+
with torch.no_grad():
|
| 892 |
+
input_image = HWC3(input_image)
|
| 893 |
+
img = resize_image(input_image, image_resolution)
|
| 894 |
+
H, W, C = img.shape
|
| 895 |
+
if condition_mode == True:
|
| 896 |
+
detected_map = inpainting(input_image, image_resolution, h_ratio_t, h_ratio_d, w_ratio_l, w_ratio_r)
|
| 897 |
+
else:
|
| 898 |
+
detected_map = img
|
| 899 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 900 |
+
|
| 901 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 902 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 903 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 904 |
+
|
| 905 |
+
if seed == -1:
|
| 906 |
+
seed = random.randint(0, 65535)
|
| 907 |
+
seed_everything(seed)
|
| 908 |
+
|
| 909 |
+
if config.save_memory:
|
| 910 |
+
model.low_vram_shift(is_diffusing=False)
|
| 911 |
+
|
| 912 |
+
task = 'inpainting'
|
| 913 |
+
task_dic = {}
|
| 914 |
+
task_dic['name'] = task_to_name[task]
|
| 915 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
| 916 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
| 917 |
+
|
| 918 |
+
cond = {"c_concat": [control],
|
| 919 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 920 |
+
"task": task_dic}
|
| 921 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
| 922 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 923 |
+
shape = (4, H // 8, W // 8)
|
| 924 |
+
|
| 925 |
+
if config.save_memory:
|
| 926 |
+
model.low_vram_shift(is_diffusing=True)
|
| 927 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
| 928 |
+
[strength] * 13)
|
| 929 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 930 |
+
shape, cond, verbose=False, eta=eta,
|
| 931 |
+
unconditional_guidance_scale=scale,
|
| 932 |
+
unconditional_conditioning=un_cond)
|
| 933 |
+
|
| 934 |
+
if config.save_memory:
|
| 935 |
+
model.low_vram_shift(is_diffusing=False)
|
| 936 |
+
|
| 937 |
+
x_samples = model.decode_first_stage(samples)
|
| 938 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
| 939 |
+
255).astype(
|
| 940 |
+
np.uint8)
|
| 941 |
+
|
| 942 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 943 |
+
return [detected_map] + results
|
| 944 |
+
|
| 945 |
+
|
| 946 |
+
############################################################################################################
|
| 947 |
+
|
| 948 |
+
|
| 949 |
+
demo = gr.Blocks()
|
| 950 |
+
with demo:
|
| 951 |
+
#gr.Markdown("UniControl Stable Diffusion Demo")
|
| 952 |
+
gr.HTML(
|
| 953 |
+
"""
|
| 954 |
+
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
|
| 955 |
+
<h1 style="font-weight: 900; font-size: 2rem; margin: 0rem">
|
| 956 |
+
UniControl Stable Diffusion Demo
|
| 957 |
+
</h1>
|
| 958 |
+
<p style="font-size: 1rem; margin: 0rem">
|
| 959 |
+
Can Qin <sup>1,2</sup>, Shu Zhang<sup>1</sup>, Ning Yu <sup>1</sup>, Yihao Feng<sup>1</sup>, Xinyi Yang<sup>1</sup>, Yingbo Zhou <sup>1</sup>, Huan Wang <sup>1</sup>, Juan Carlos Niebles<sup>1</sup>, Caiming Xiong <sup>1</sup>, Silvio Savarese <sup>1</sup>, Stefano Ermon <sup>3</sup>, Yun Fu <sup>2</sup>, Ran Xu <sup>1</sup>
|
| 960 |
+
</p>
|
| 961 |
+
<p style="font-size: 0.8rem; margin: 0rem; line-height: 1em">
|
| 962 |
+
<sup>1</sup> Salesforce AI <sup>2</sup> Northeastern University <sup>3</sup> Stanford University
|
| 963 |
+
</p>
|
| 964 |
+
<p style="font-size: 0.8rem; margin: 0rem; line-height: 1em">
|
| 965 |
+
Work done when Can Qin was an intern at Salesforce AI Research.
|
| 966 |
+
</p>
|
| 967 |
+
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
|
| 968 |
+
<b> ONE compact model for ALL the visual-condition-to-image generation! </b>
|
| 969 |
+
<b><a href="https://github.com/salesforce/UniControl">[Github]</a></b>
|
| 970 |
+
<b><a href="https://canqin001.github.io/UniControl-Page/">[Website]</a></b>
|
| 971 |
+
<b><a href="https://arxiv.org/abs/2305.11147">[arXiv]</a></b>
|
| 972 |
+
</p>
|
| 973 |
+
</div>
|
| 974 |
+
""")
|
| 975 |
+
|
| 976 |
+
with gr.Tabs():
|
| 977 |
+
with gr.TabItem("Canny"):
|
| 978 |
+
with gr.Row():
|
| 979 |
+
gr.Markdown("## UniControl Stable Diffusion with Canny Edge Maps")
|
| 980 |
+
with gr.Row():
|
| 981 |
+
with gr.Column():
|
| 982 |
+
input_image = gr.Image(source='upload', type="numpy")
|
| 983 |
+
prompt = gr.Textbox(label="Prompt")
|
| 984 |
+
run_button = gr.Button(label="Run")
|
| 985 |
+
with gr.Accordion("Advanced options", open=False):
|
| 986 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
| 987 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 988 |
+
step=64)
|
| 989 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 990 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Canny', value=True)
|
| 991 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 992 |
+
low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=40, step=1)
|
| 993 |
+
high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200,
|
| 994 |
+
step=1)
|
| 995 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 996 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
| 997 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
| 998 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
| 999 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
|
| 1000 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
| 1001 |
+
with gr.Column():
|
| 1002 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
| 1003 |
+
height='auto')
|
| 1004 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
| 1005 |
+
strength, scale, seed, eta, low_threshold, high_threshold, condition_mode]
|
| 1006 |
+
run_button.click(fn=process_canny, inputs=ips, outputs=[result_gallery])
|
| 1007 |
+
|
| 1008 |
+
with gr.TabItem("HED"):
|
| 1009 |
+
with gr.Row():
|
| 1010 |
+
gr.Markdown("## UniControl Stable Diffusion with HED Maps")
|
| 1011 |
+
with gr.Row():
|
| 1012 |
+
with gr.Column():
|
| 1013 |
+
input_image = gr.Image(source='upload', type="numpy")
|
| 1014 |
+
prompt = gr.Textbox(label="Prompt")
|
| 1015 |
+
run_button = gr.Button(label="Run")
|
| 1016 |
+
with gr.Accordion("Advanced options", open=False):
|
| 1017 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
| 1018 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1019 |
+
step=64)
|
| 1020 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1021 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> HED', value=True)
|
| 1022 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1023 |
+
detect_resolution = gr.Slider(label="HED Resolution", minimum=128, maximum=1024, value=512,
|
| 1024 |
+
step=1)
|
| 1025 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 1026 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
| 1027 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
| 1028 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
| 1029 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
|
| 1030 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
| 1031 |
+
with gr.Column():
|
| 1032 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
| 1033 |
+
height='auto')
|
| 1034 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
|
| 1035 |
+
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
|
| 1036 |
+
run_button.click(fn=process_hed, inputs=ips, outputs=[result_gallery])
|
| 1037 |
+
|
| 1038 |
+
with gr.TabItem("Sketch"):
|
| 1039 |
+
with gr.Row():
|
| 1040 |
+
gr.Markdown("## UniControl Stable Diffusion with Sketch Maps")
|
| 1041 |
+
with gr.Row():
|
| 1042 |
+
with gr.Column():
|
| 1043 |
+
input_image = gr.Image(source='upload', type="numpy")
|
| 1044 |
+
prompt = gr.Textbox(label="Prompt")
|
| 1045 |
+
run_button = gr.Button(label="Run")
|
| 1046 |
+
with gr.Accordion("Advanced options", open=False):
|
| 1047 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
| 1048 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1049 |
+
step=64)
|
| 1050 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1051 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Sketch', value=False)
|
| 1052 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1053 |
+
detect_resolution = gr.Slider(label="HED Resolution", minimum=128, maximum=1024, value=512,
|
| 1054 |
+
step=1)
|
| 1055 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 1056 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
| 1057 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
| 1058 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
| 1059 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
|
| 1060 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
| 1061 |
+
with gr.Column():
|
| 1062 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
| 1063 |
+
height='auto')
|
| 1064 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
|
| 1065 |
+
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
|
| 1066 |
+
run_button.click(fn=process_sketch, inputs=ips, outputs=[result_gallery])
|
| 1067 |
+
|
| 1068 |
+
with gr.TabItem("Depth"):
|
| 1069 |
+
with gr.Row():
|
| 1070 |
+
gr.Markdown("## UniControl Stable Diffusion with Depth Maps")
|
| 1071 |
+
with gr.Row():
|
| 1072 |
+
with gr.Column():
|
| 1073 |
+
input_image = gr.Image(source='upload', type="numpy")
|
| 1074 |
+
prompt = gr.Textbox(label="Prompt")
|
| 1075 |
+
run_button = gr.Button(label="Run")
|
| 1076 |
+
with gr.Accordion("Advanced options", open=False):
|
| 1077 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
| 1078 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1079 |
+
step=64)
|
| 1080 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1081 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Depth', value=True)
|
| 1082 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1083 |
+
detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384,
|
| 1084 |
+
step=1)
|
| 1085 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 1086 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
| 1087 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
| 1088 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
| 1089 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
|
| 1090 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
| 1091 |
+
with gr.Column():
|
| 1092 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
| 1093 |
+
height='auto')
|
| 1094 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
|
| 1095 |
+
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
|
| 1096 |
+
run_button.click(fn=process_depth, inputs=ips, outputs=[result_gallery])
|
| 1097 |
+
|
| 1098 |
+
with gr.TabItem("Normal"):
|
| 1099 |
+
with gr.Row():
|
| 1100 |
+
gr.Markdown("## UniControl Stable Diffusion with Normal Surface")
|
| 1101 |
+
with gr.Row():
|
| 1102 |
+
with gr.Column():
|
| 1103 |
+
input_image = gr.Image(source='upload', type="numpy")
|
| 1104 |
+
prompt = gr.Textbox(label="Prompt")
|
| 1105 |
+
run_button = gr.Button(label="Run")
|
| 1106 |
+
with gr.Accordion("Advanced options", open=False):
|
| 1107 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
| 1108 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1109 |
+
step=64)
|
| 1110 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1111 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Normal', value=True)
|
| 1112 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1113 |
+
detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384,
|
| 1114 |
+
step=1)
|
| 1115 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 1116 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
| 1117 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
| 1118 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
| 1119 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
|
| 1120 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
| 1121 |
+
with gr.Column():
|
| 1122 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
| 1123 |
+
height='auto')
|
| 1124 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
|
| 1125 |
+
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
|
| 1126 |
+
run_button.click(fn=process_normal, inputs=ips, outputs=[result_gallery])
|
| 1127 |
+
|
| 1128 |
+
with gr.TabItem("Human Pose"):
|
| 1129 |
+
with gr.Row():
|
| 1130 |
+
gr.Markdown("## UniControl Stable Diffusion with Human Pose")
|
| 1131 |
+
with gr.Row():
|
| 1132 |
+
with gr.Column():
|
| 1133 |
+
input_image = gr.Image(source='upload', type="numpy")
|
| 1134 |
+
prompt = gr.Textbox(label="Prompt")
|
| 1135 |
+
run_button = gr.Button(label="Run")
|
| 1136 |
+
with gr.Accordion("Advanced options", open=False):
|
| 1137 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
| 1138 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1139 |
+
step=64)
|
| 1140 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1141 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Skeleton', value=True)
|
| 1142 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1143 |
+
detect_resolution = gr.Slider(label="OpenPose Resolution", minimum=128, maximum=1024, value=512,
|
| 1144 |
+
step=1)
|
| 1145 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 1146 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
| 1147 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
| 1148 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
| 1149 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
|
| 1150 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
| 1151 |
+
with gr.Column():
|
| 1152 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
| 1153 |
+
height='auto')
|
| 1154 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
|
| 1155 |
+
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
|
| 1156 |
+
run_button.click(fn=process_pose, inputs=ips, outputs=[result_gallery])
|
| 1157 |
+
|
| 1158 |
+
with gr.TabItem("Segmentation"):
|
| 1159 |
+
with gr.Row():
|
| 1160 |
+
gr.Markdown("## UniControl Stable Diffusion with Segmentation Maps (ADE20K)")
|
| 1161 |
+
with gr.Row():
|
| 1162 |
+
with gr.Column():
|
| 1163 |
+
input_image = gr.Image(source='upload', type="numpy")
|
| 1164 |
+
prompt = gr.Textbox(label="Prompt")
|
| 1165 |
+
run_button = gr.Button(label="Run")
|
| 1166 |
+
with gr.Accordion("Advanced options", open=False):
|
| 1167 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
| 1168 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1169 |
+
step=64)
|
| 1170 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1171 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Seg', value=True)
|
| 1172 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1173 |
+
detect_resolution = gr.Slider(label="Segmentation Resolution", minimum=128, maximum=1024,
|
| 1174 |
+
value=512, step=1)
|
| 1175 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 1176 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
| 1177 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
| 1178 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
| 1179 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
|
| 1180 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
| 1181 |
+
with gr.Column():
|
| 1182 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
| 1183 |
+
height='auto')
|
| 1184 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
|
| 1185 |
+
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
|
| 1186 |
+
run_button.click(fn=process_seg, inputs=ips, outputs=[result_gallery])
|
| 1187 |
+
|
| 1188 |
+
with gr.TabItem("Bbox"):
|
| 1189 |
+
with gr.Row():
|
| 1190 |
+
gr.Markdown("## UniControl Stable Diffusion with Object Bounding Boxes (MS-COCO)")
|
| 1191 |
+
with gr.Row():
|
| 1192 |
+
with gr.Column():
|
| 1193 |
+
input_image = gr.Image(source='upload', type="numpy")
|
| 1194 |
+
prompt = gr.Textbox(label="Prompt")
|
| 1195 |
+
run_button = gr.Button(label="Run")
|
| 1196 |
+
with gr.Accordion("Advanced options", open=False):
|
| 1197 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
| 1198 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1199 |
+
step=64)
|
| 1200 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1201 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Bbox', value=True)
|
| 1202 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1203 |
+
confidence = gr.Slider(label="Confidence of Detection", minimum=0.1, maximum=1.0, value=0.4,
|
| 1204 |
+
step=0.1)
|
| 1205 |
+
nms_thresh = gr.Slider(label="Nms Threshold", minimum=0.1, maximum=1.0, value=0.5, step=0.1)
|
| 1206 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 1207 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
| 1208 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
| 1209 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
| 1210 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
|
| 1211 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
| 1212 |
+
with gr.Column():
|
| 1213 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
| 1214 |
+
height='auto')
|
| 1215 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
| 1216 |
+
strength, scale, seed, eta, confidence, nms_thresh, condition_mode]
|
| 1217 |
+
run_button.click(fn=process_bbox, inputs=ips, outputs=[result_gallery])
|
| 1218 |
+
|
| 1219 |
+
with gr.TabItem("Outpainting"):
|
| 1220 |
+
with gr.Row():
|
| 1221 |
+
gr.Markdown("## UniControl Stable Diffusion with Image Outpainting")
|
| 1222 |
+
with gr.Row():
|
| 1223 |
+
with gr.Column():
|
| 1224 |
+
input_image = gr.Image(source='upload', type="numpy")
|
| 1225 |
+
prompt = gr.Textbox(label="Prompt")
|
| 1226 |
+
run_button = gr.Button(label="Run")
|
| 1227 |
+
with gr.Accordion("Advanced options", open=False):
|
| 1228 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
| 1229 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1230 |
+
step=64)
|
| 1231 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1232 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: Extending', value=False)
|
| 1233 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1234 |
+
|
| 1235 |
+
height_top_extended = gr.Slider(label="Top Extended Ratio (%)", minimum=1, maximum=200,
|
| 1236 |
+
value=50, step=1)
|
| 1237 |
+
height_down_extended = gr.Slider(label="Down Extended Ratio (%)", minimum=1, maximum=200,
|
| 1238 |
+
value=50, step=1)
|
| 1239 |
+
|
| 1240 |
+
width_left_extended = gr.Slider(label="Left Extended Ratio (%)", minimum=1, maximum=200,
|
| 1241 |
+
value=50, step=1)
|
| 1242 |
+
width_right_extended = gr.Slider(label="Right Extended Ratio (%)", minimum=1, maximum=200,
|
| 1243 |
+
value=50, step=1)
|
| 1244 |
+
|
| 1245 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 1246 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
| 1247 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
| 1248 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
| 1249 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
|
| 1250 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='')
|
| 1251 |
+
with gr.Column():
|
| 1252 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
| 1253 |
+
height='auto')
|
| 1254 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
| 1255 |
+
strength, scale, seed, eta, height_top_extended, height_down_extended, width_left_extended, width_right_extended, condition_mode]
|
| 1256 |
+
run_button.click(fn=process_outpainting, inputs=ips, outputs=[result_gallery])
|
| 1257 |
+
|
| 1258 |
+
with gr.TabItem("Inpainting"):
|
| 1259 |
+
with gr.Row():
|
| 1260 |
+
gr.Markdown("## UniControl Stable Diffusion with Image Inpainting")
|
| 1261 |
+
with gr.Row():
|
| 1262 |
+
with gr.Column():
|
| 1263 |
+
input_image = gr.Image(source='upload', type="numpy")
|
| 1264 |
+
prompt = gr.Textbox(label="Prompt")
|
| 1265 |
+
run_button = gr.Button(label="Run")
|
| 1266 |
+
with gr.Accordion("Advanced options", open=False):
|
| 1267 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
| 1268 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1269 |
+
step=64)
|
| 1270 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1271 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: Cropped Masking', value=False)
|
| 1272 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1273 |
+
h_ratio_t = gr.Slider(label="Top Masking Ratio (%)", minimum=0, maximum=100, value=30,
|
| 1274 |
+
step=1)
|
| 1275 |
+
h_ratio_d = gr.Slider(label="Down Masking Ratio (%)", minimum=0, maximum=100, value=60,
|
| 1276 |
+
step=1)
|
| 1277 |
+
w_ratio_l = gr.Slider(label="Left Masking Ratio (%)", minimum=0, maximum=100, value=30,
|
| 1278 |
+
step=1)
|
| 1279 |
+
w_ratio_r = gr.Slider(label="Right Masking Ratio (%)", minimum=0, maximum=100, value=60,
|
| 1280 |
+
step=1)
|
| 1281 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 1282 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
| 1283 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
| 1284 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
| 1285 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
|
| 1286 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='')
|
| 1287 |
+
with gr.Column():
|
| 1288 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
| 1289 |
+
height='auto')
|
| 1290 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
| 1291 |
+
strength, scale, seed, eta, h_ratio_t, h_ratio_d, w_ratio_l, w_ratio_r, condition_mode]
|
| 1292 |
+
run_button.click(fn=process_inpainting, inputs=ips, outputs=[result_gallery])
|
| 1293 |
+
|
| 1294 |
+
with gr.TabItem("Colorization"):
|
| 1295 |
+
with gr.Row():
|
| 1296 |
+
gr.Markdown("## UniControl Stable Diffusion with Gray Image Colorization")
|
| 1297 |
+
with gr.Row():
|
| 1298 |
+
with gr.Column():
|
| 1299 |
+
input_image = gr.Image(source='upload', type="numpy")
|
| 1300 |
+
prompt = gr.Textbox(label="Prompt")
|
| 1301 |
+
run_button = gr.Button(label="Run")
|
| 1302 |
+
with gr.Accordion("Advanced options", open=False):
|
| 1303 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
| 1304 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1305 |
+
step=64)
|
| 1306 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1307 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Gray', value=False)
|
| 1308 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1309 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 1310 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
| 1311 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
| 1312 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
| 1313 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, colorful')
|
| 1314 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='')
|
| 1315 |
+
with gr.Column():
|
| 1316 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
| 1317 |
+
height='auto')
|
| 1318 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
| 1319 |
+
strength, scale, seed, eta, condition_mode]
|
| 1320 |
+
run_button.click(fn=process_colorization, inputs=ips, outputs=[result_gallery])
|
| 1321 |
+
|
| 1322 |
+
with gr.TabItem("Deblurring"):
|
| 1323 |
+
with gr.Row():
|
| 1324 |
+
gr.Markdown("## UniControl Stable Diffusion with Image Deblurring")
|
| 1325 |
+
with gr.Row():
|
| 1326 |
+
with gr.Column():
|
| 1327 |
+
input_image = gr.Image(source='upload', type="numpy")
|
| 1328 |
+
prompt = gr.Textbox(label="Prompt")
|
| 1329 |
+
run_button = gr.Button(label="Run")
|
| 1330 |
+
with gr.Accordion("Advanced options", open=False):
|
| 1331 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
| 1332 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
| 1333 |
+
step=64)
|
| 1334 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 1335 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Blur', value=False)
|
| 1336 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 1337 |
+
ksize = gr.Slider(label="Kernel Size", minimum=11, maximum=101, value=51, step=2)
|
| 1338 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 1339 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
| 1340 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
| 1341 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
| 1342 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
|
| 1343 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='')
|
| 1344 |
+
with gr.Column():
|
| 1345 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
| 1346 |
+
height='auto')
|
| 1347 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
| 1348 |
+
strength, scale, seed, eta, ksize, condition_mode]
|
| 1349 |
+
run_button.click(fn=process_deblur, inputs=ips, outputs=[result_gallery])
|
| 1350 |
+
|
| 1351 |
+
|
| 1352 |
+
gr.Markdown('''### Tips
|
| 1353 |
+
- Please pay attention to <u> Condition Extraction </u> option.
|
| 1354 |
+
- Positive prompts and negative prompts are very useful sometimes.
|
| 1355 |
+
''')
|
| 1356 |
+
gr.Markdown('''### Related Spaces
|
| 1357 |
+
- https://huggingface.co/spaces/hysts/ControlNet
|
| 1358 |
+
- https://huggingface.co/spaces/shi-labs/Prompt-Free-Diffusion
|
| 1359 |
+
''')
|
| 1360 |
+
demo.launch()
|
annotator/__pycache__/util.cpython-310.pyc
ADDED
|
Binary file (1.62 kB). View file
|
|
|
annotator/__pycache__/util.cpython-38.pyc
ADDED
|
Binary file (1.6 kB). View file
|
|
|
annotator/blur/__init__.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
|
| 3 |
+
class Blurrer:
|
| 4 |
+
def __call__(self, img, ksize):
|
| 5 |
+
img_new = cv2.GaussianBlur(img, (ksize, ksize), cv2.BORDER_DEFAULT)
|
| 6 |
+
img_new = img_new.astype('ubyte')
|
| 7 |
+
return img_new
|
annotator/blur/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (550 Bytes). View file
|
|
|
annotator/blur/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (507 Bytes). View file
|
|
|
annotator/canny/__init__.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
* Copyright (c) 2023 Salesforce, Inc.
|
| 3 |
+
* All rights reserved.
|
| 4 |
+
* SPDX-License-Identifier: Apache License 2.0
|
| 5 |
+
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
|
| 6 |
+
* By Can Qin
|
| 7 |
+
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
|
| 8 |
+
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
|
| 9 |
+
'''
|
| 10 |
+
|
| 11 |
+
import cv2
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class CannyDetector:
|
| 15 |
+
def __call__(self, img, low_threshold, high_threshold):
|
| 16 |
+
return cv2.Canny(img, low_threshold, high_threshold)
|
annotator/canny/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (890 Bytes). View file
|
|
|
annotator/canny/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (847 Bytes). View file
|
|
|
annotator/ckpts/ckpts.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Weights here.
|
annotator/grayscale/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from skimage import color
|
| 2 |
+
|
| 3 |
+
class GrayscaleConverter:
|
| 4 |
+
def __call__(self, img):
|
| 5 |
+
return (color.rgb2gray(img) * 255.0).astype('ubyte')
|
annotator/grayscale/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (554 Bytes). View file
|
|
|
annotator/grayscale/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (511 Bytes). View file
|
|
|
annotator/hed/__init__.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
* Copyright (c) 2023 Salesforce, Inc.
|
| 3 |
+
* All rights reserved.
|
| 4 |
+
* SPDX-License-Identifier: Apache License 2.0
|
| 5 |
+
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
|
| 6 |
+
* By Can Qin
|
| 7 |
+
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
|
| 8 |
+
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
|
| 9 |
+
'''
|
| 10 |
+
|
| 11 |
+
# This is an improved version and model of HED edge detection without GPL contamination
|
| 12 |
+
# Please use this implementation in your products
|
| 13 |
+
# This implementation may produce slightly different results from Saining Xie's official implementations,
|
| 14 |
+
# but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations.
|
| 15 |
+
# Different from official models and other implementations, this is an RGB-input model (rather than BGR)
|
| 16 |
+
# and in this way it works better for gradio's RGB protocol
|
| 17 |
+
|
| 18 |
+
import os
|
| 19 |
+
import cv2
|
| 20 |
+
import torch
|
| 21 |
+
import numpy as np
|
| 22 |
+
|
| 23 |
+
from einops import rearrange
|
| 24 |
+
from annotator.util import annotator_ckpts_path
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class DoubleConvBlock(torch.nn.Module):
|
| 28 |
+
def __init__(self, input_channel, output_channel, layer_number):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.convs = torch.nn.Sequential()
|
| 31 |
+
self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
|
| 32 |
+
for i in range(1, layer_number):
|
| 33 |
+
self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
|
| 34 |
+
self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0)
|
| 35 |
+
|
| 36 |
+
def __call__(self, x, down_sampling=False):
|
| 37 |
+
h = x
|
| 38 |
+
if down_sampling:
|
| 39 |
+
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
|
| 40 |
+
for conv in self.convs:
|
| 41 |
+
h = conv(h)
|
| 42 |
+
h = torch.nn.functional.relu(h)
|
| 43 |
+
return h, self.projection(h)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class ControlNetHED_Apache2(torch.nn.Module):
|
| 47 |
+
def __init__(self):
|
| 48 |
+
super().__init__()
|
| 49 |
+
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
|
| 50 |
+
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
|
| 51 |
+
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
|
| 52 |
+
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
|
| 53 |
+
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
|
| 54 |
+
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)
|
| 55 |
+
|
| 56 |
+
def __call__(self, x):
|
| 57 |
+
h = x - self.norm
|
| 58 |
+
h, projection1 = self.block1(h)
|
| 59 |
+
h, projection2 = self.block2(h, down_sampling=True)
|
| 60 |
+
h, projection3 = self.block3(h, down_sampling=True)
|
| 61 |
+
h, projection4 = self.block4(h, down_sampling=True)
|
| 62 |
+
h, projection5 = self.block5(h, down_sampling=True)
|
| 63 |
+
return projection1, projection2, projection3, projection4, projection5
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class HEDdetector:
|
| 67 |
+
def __init__(self):
|
| 68 |
+
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetHED.pth"
|
| 69 |
+
modelpath = remote_model_path
|
| 70 |
+
modelpath = os.path.join(annotator_ckpts_path, "ControlNetHED.pth")
|
| 71 |
+
if not os.path.exists(modelpath):
|
| 72 |
+
from basicsr.utils.download_util import load_file_from_url
|
| 73 |
+
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
| 74 |
+
self.netNetwork = ControlNetHED_Apache2().float().cuda().eval()
|
| 75 |
+
self.netNetwork.load_state_dict(torch.load(modelpath))
|
| 76 |
+
|
| 77 |
+
def __call__(self, input_image):
|
| 78 |
+
assert input_image.ndim == 3
|
| 79 |
+
H, W, C = input_image.shape
|
| 80 |
+
with torch.no_grad():
|
| 81 |
+
image_hed = torch.from_numpy(input_image.copy()).float().cuda()
|
| 82 |
+
image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
|
| 83 |
+
edges = self.netNetwork(image_hed)
|
| 84 |
+
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
|
| 85 |
+
edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges]
|
| 86 |
+
edges = np.stack(edges, axis=2)
|
| 87 |
+
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
|
| 88 |
+
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
|
| 89 |
+
return edge
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def nms(x, t, s):
|
| 93 |
+
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
| 94 |
+
|
| 95 |
+
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
| 96 |
+
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
| 97 |
+
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
| 98 |
+
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
| 99 |
+
|
| 100 |
+
y = np.zeros_like(x)
|
| 101 |
+
|
| 102 |
+
for f in [f1, f2, f3, f4]:
|
| 103 |
+
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
| 104 |
+
|
| 105 |
+
z = np.zeros_like(y, dtype=np.uint8)
|
| 106 |
+
z[y > t] = 255
|
| 107 |
+
return z
|
annotator/hed/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (4.78 kB). View file
|
|
|
annotator/hed/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (4.69 kB). View file
|
|
|
annotator/inpainting/__init__.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
class Inpainter:
|
| 4 |
+
def __call__(self, img, height_top_mask, height_down_mask, width_left_mask, width_right_mask):
|
| 5 |
+
h = img.shape[0]
|
| 6 |
+
w = img.shape[1]
|
| 7 |
+
h_top_mask = int(float(h) / 100.0 * float(height_top_mask))
|
| 8 |
+
h_down_mask = int(float(h) / 100.0 * float(height_down_mask))
|
| 9 |
+
|
| 10 |
+
w_left_mask = int(float(w) / 100.0 * float(width_left_mask))
|
| 11 |
+
w_right_mask = int(float(w) / 100.0 * float(width_right_mask))
|
| 12 |
+
|
| 13 |
+
img_new = img
|
| 14 |
+
img_new[h_top_mask:h_down_mask, w_left_mask:w_right_mask] = 0
|
| 15 |
+
img_new = img_new.astype('ubyte')
|
| 16 |
+
return img_new
|
annotator/inpainting/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (824 Bytes). View file
|
|
|
annotator/inpainting/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (764 Bytes). View file
|
|
|
annotator/midas/LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2019 Intel ISL (Intel Intelligent Systems Lab)
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
annotator/midas/__init__.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
* Copyright (c) 2023 Salesforce, Inc.
|
| 3 |
+
* All rights reserved.
|
| 4 |
+
* SPDX-License-Identifier: Apache License 2.0
|
| 5 |
+
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
|
| 6 |
+
* By Can Qin
|
| 7 |
+
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
|
| 8 |
+
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
|
| 9 |
+
'''
|
| 10 |
+
|
| 11 |
+
# Midas Depth Estimation
|
| 12 |
+
# From https://github.com/isl-org/MiDaS
|
| 13 |
+
# MIT LICENSE
|
| 14 |
+
|
| 15 |
+
import cv2
|
| 16 |
+
import numpy as np
|
| 17 |
+
import torch
|
| 18 |
+
|
| 19 |
+
from einops import rearrange
|
| 20 |
+
from .api import MiDaSInference
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class MidasDetector:
|
| 24 |
+
def __init__(self):
|
| 25 |
+
self.model = MiDaSInference(model_type="dpt_hybrid").cuda()
|
| 26 |
+
|
| 27 |
+
def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1):
|
| 28 |
+
assert input_image.ndim == 3
|
| 29 |
+
image_depth = input_image
|
| 30 |
+
with torch.no_grad():
|
| 31 |
+
image_depth = torch.from_numpy(image_depth).float().cuda()
|
| 32 |
+
image_depth = image_depth / 127.5 - 1.0
|
| 33 |
+
image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
|
| 34 |
+
depth = self.model(image_depth)[0]
|
| 35 |
+
|
| 36 |
+
depth_pt = depth.clone()
|
| 37 |
+
depth_pt -= torch.min(depth_pt)
|
| 38 |
+
depth_pt /= torch.max(depth_pt)
|
| 39 |
+
depth_pt = depth_pt.cpu().numpy()
|
| 40 |
+
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
|
| 41 |
+
|
| 42 |
+
depth_np = depth.cpu().numpy()
|
| 43 |
+
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
|
| 44 |
+
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
|
| 45 |
+
z = np.ones_like(x) * a
|
| 46 |
+
x[depth_pt < bg_th] = 0
|
| 47 |
+
y[depth_pt < bg_th] = 0
|
| 48 |
+
normal = np.stack([x, y, z], axis=2)
|
| 49 |
+
normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
|
| 50 |
+
normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
|
| 51 |
+
|
| 52 |
+
return depth_image, normal_image
|
annotator/midas/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (1.96 kB). View file
|
|
|
annotator/midas/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (1.92 kB). View file
|
|
|
annotator/midas/__pycache__/api.cpython-310.pyc
ADDED
|
Binary file (4.1 kB). View file
|
|
|
annotator/midas/__pycache__/api.cpython-38.pyc
ADDED
|
Binary file (4.14 kB). View file
|
|
|
annotator/midas/api.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
* Copyright (c) 2023 Salesforce, Inc.
|
| 3 |
+
* All rights reserved.
|
| 4 |
+
* SPDX-License-Identifier: Apache License 2.0
|
| 5 |
+
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
|
| 6 |
+
* By Can Qin
|
| 7 |
+
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
|
| 8 |
+
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
|
| 9 |
+
'''
|
| 10 |
+
|
| 11 |
+
# based on https://github.com/isl-org/MiDaS
|
| 12 |
+
|
| 13 |
+
import cv2
|
| 14 |
+
import os
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn as nn
|
| 17 |
+
from torchvision.transforms import Compose
|
| 18 |
+
|
| 19 |
+
from .midas.dpt_depth import DPTDepthModel
|
| 20 |
+
from .midas.midas_net import MidasNet
|
| 21 |
+
from .midas.midas_net_custom import MidasNet_small
|
| 22 |
+
from .midas.transforms import Resize, NormalizeImage, PrepareForNet
|
| 23 |
+
from annotator.util import annotator_ckpts_path
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
ISL_PATHS = {
|
| 27 |
+
"dpt_large": os.path.join(annotator_ckpts_path, "dpt_large_384.pt"),
|
| 28 |
+
"dpt_hybrid": os.path.join(annotator_ckpts_path, "dpt_hybrid-midas-501f0c75.pt"),
|
| 29 |
+
"midas_v21": "",
|
| 30 |
+
"midas_v21_small": "",
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt"
|
| 34 |
+
# remote_model_path = "https://storage.googleapis.com/sfr-unicontrol-data-research/annotator/ckpts/dpt_large_384.pt" #"https://huggingface.co/Salesforce/UniControl/blob/main/annotator/ckpts/dpt_large_384.pt"
|
| 35 |
+
|
| 36 |
+
def disabled_train(self, mode=True):
|
| 37 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
| 38 |
+
does not change anymore."""
|
| 39 |
+
return self
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def load_midas_transform(model_type):
|
| 43 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
| 44 |
+
# load transform only
|
| 45 |
+
if model_type == "dpt_large": # DPT-Large
|
| 46 |
+
net_w, net_h = 384, 384
|
| 47 |
+
resize_mode = "minimal"
|
| 48 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 49 |
+
|
| 50 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
| 51 |
+
net_w, net_h = 384, 384
|
| 52 |
+
resize_mode = "minimal"
|
| 53 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 54 |
+
|
| 55 |
+
elif model_type == "midas_v21":
|
| 56 |
+
net_w, net_h = 384, 384
|
| 57 |
+
resize_mode = "upper_bound"
|
| 58 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 59 |
+
|
| 60 |
+
elif model_type == "midas_v21_small":
|
| 61 |
+
net_w, net_h = 256, 256
|
| 62 |
+
resize_mode = "upper_bound"
|
| 63 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 64 |
+
|
| 65 |
+
else:
|
| 66 |
+
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
|
| 67 |
+
|
| 68 |
+
transform = Compose(
|
| 69 |
+
[
|
| 70 |
+
Resize(
|
| 71 |
+
net_w,
|
| 72 |
+
net_h,
|
| 73 |
+
resize_target=None,
|
| 74 |
+
keep_aspect_ratio=True,
|
| 75 |
+
ensure_multiple_of=32,
|
| 76 |
+
resize_method=resize_mode,
|
| 77 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
| 78 |
+
),
|
| 79 |
+
normalization,
|
| 80 |
+
PrepareForNet(),
|
| 81 |
+
]
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
return transform
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def load_model(model_type):
|
| 88 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
| 89 |
+
# load network
|
| 90 |
+
model_path = ISL_PATHS[model_type]
|
| 91 |
+
if model_type == "dpt_large": # DPT-Large
|
| 92 |
+
if not os.path.exists(model_path):
|
| 93 |
+
from basicsr.utils.download_util import load_file_from_url
|
| 94 |
+
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
| 95 |
+
#model_path = remote_model_path
|
| 96 |
+
model = DPTDepthModel(
|
| 97 |
+
path=model_path,
|
| 98 |
+
backbone="vitl16_384",
|
| 99 |
+
non_negative=True,
|
| 100 |
+
)
|
| 101 |
+
net_w, net_h = 384, 384
|
| 102 |
+
resize_mode = "minimal"
|
| 103 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 104 |
+
|
| 105 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
| 106 |
+
if not os.path.exists(model_path):
|
| 107 |
+
from basicsr.utils.download_util import load_file_from_url
|
| 108 |
+
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
| 109 |
+
|
| 110 |
+
model = DPTDepthModel(
|
| 111 |
+
path=model_path,
|
| 112 |
+
backbone="vitb_rn50_384",
|
| 113 |
+
non_negative=True,
|
| 114 |
+
)
|
| 115 |
+
net_w, net_h = 384, 384
|
| 116 |
+
resize_mode = "minimal"
|
| 117 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 118 |
+
|
| 119 |
+
elif model_type == "midas_v21":
|
| 120 |
+
model = MidasNet(model_path, non_negative=True)
|
| 121 |
+
net_w, net_h = 384, 384
|
| 122 |
+
resize_mode = "upper_bound"
|
| 123 |
+
normalization = NormalizeImage(
|
| 124 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
elif model_type == "midas_v21_small":
|
| 128 |
+
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
|
| 129 |
+
non_negative=True, blocks={'expand': True})
|
| 130 |
+
net_w, net_h = 256, 256
|
| 131 |
+
resize_mode = "upper_bound"
|
| 132 |
+
normalization = NormalizeImage(
|
| 133 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
else:
|
| 137 |
+
print(f"model_type '{model_type}' not implemented, use: --model_type large")
|
| 138 |
+
assert False
|
| 139 |
+
|
| 140 |
+
transform = Compose(
|
| 141 |
+
[
|
| 142 |
+
Resize(
|
| 143 |
+
net_w,
|
| 144 |
+
net_h,
|
| 145 |
+
resize_target=None,
|
| 146 |
+
keep_aspect_ratio=True,
|
| 147 |
+
ensure_multiple_of=32,
|
| 148 |
+
resize_method=resize_mode,
|
| 149 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
| 150 |
+
),
|
| 151 |
+
normalization,
|
| 152 |
+
PrepareForNet(),
|
| 153 |
+
]
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
return model.eval(), transform
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
class MiDaSInference(nn.Module):
|
| 160 |
+
MODEL_TYPES_TORCH_HUB = [
|
| 161 |
+
"DPT_Large",
|
| 162 |
+
"DPT_Hybrid",
|
| 163 |
+
"MiDaS_small"
|
| 164 |
+
]
|
| 165 |
+
MODEL_TYPES_ISL = [
|
| 166 |
+
"dpt_large",
|
| 167 |
+
"dpt_hybrid",
|
| 168 |
+
"midas_v21",
|
| 169 |
+
"midas_v21_small",
|
| 170 |
+
]
|
| 171 |
+
|
| 172 |
+
def __init__(self, model_type):
|
| 173 |
+
super().__init__()
|
| 174 |
+
assert (model_type in self.MODEL_TYPES_ISL)
|
| 175 |
+
model, _ = load_model(model_type)
|
| 176 |
+
self.model = model
|
| 177 |
+
self.model.train = disabled_train
|
| 178 |
+
|
| 179 |
+
def forward(self, x):
|
| 180 |
+
with torch.no_grad():
|
| 181 |
+
prediction = self.model(x)
|
| 182 |
+
return prediction
|
| 183 |
+
|
annotator/midas/midas/__init__.py
ADDED
|
File without changes
|
annotator/midas/midas/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (167 Bytes). View file
|
|
|
annotator/midas/midas/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (126 Bytes). View file
|
|
|
annotator/midas/midas/__pycache__/base_model.cpython-310.pyc
ADDED
|
Binary file (1.07 kB). View file
|
|
|
annotator/midas/midas/__pycache__/base_model.cpython-38.pyc
ADDED
|
Binary file (1.03 kB). View file
|
|
|
annotator/midas/midas/__pycache__/blocks.cpython-310.pyc
ADDED
|
Binary file (7.58 kB). View file
|
|
|
annotator/midas/midas/__pycache__/blocks.cpython-38.pyc
ADDED
|
Binary file (7.72 kB). View file
|
|
|
annotator/midas/midas/__pycache__/dpt_depth.cpython-310.pyc
ADDED
|
Binary file (3.3 kB). View file
|
|
|
annotator/midas/midas/__pycache__/dpt_depth.cpython-38.pyc
ADDED
|
Binary file (3.21 kB). View file
|
|
|
annotator/midas/midas/__pycache__/midas_net.cpython-310.pyc
ADDED
|
Binary file (2.72 kB). View file
|
|
|
annotator/midas/midas/__pycache__/midas_net.cpython-38.pyc
ADDED
|
Binary file (2.67 kB). View file
|
|
|
annotator/midas/midas/__pycache__/midas_net_custom.cpython-310.pyc
ADDED
|
Binary file (3.84 kB). View file
|
|
|
annotator/midas/midas/__pycache__/midas_net_custom.cpython-38.pyc
ADDED
|
Binary file (3.79 kB). View file
|
|
|
annotator/midas/midas/__pycache__/transforms.cpython-310.pyc
ADDED
|
Binary file (6.05 kB). View file
|
|
|
annotator/midas/midas/__pycache__/transforms.cpython-38.pyc
ADDED
|
Binary file (6.05 kB). View file
|
|
|
annotator/midas/midas/__pycache__/vit.cpython-310.pyc
ADDED
|
Binary file (9.74 kB). View file
|
|
|
annotator/midas/midas/__pycache__/vit.cpython-38.pyc
ADDED
|
Binary file (10.1 kB). View file
|
|
|
annotator/midas/midas/base_model.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
* Copyright (c) 2023 Salesforce, Inc.
|
| 3 |
+
* All rights reserved.
|
| 4 |
+
* SPDX-License-Identifier: Apache License 2.0
|
| 5 |
+
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
|
| 6 |
+
* By Can Qin
|
| 7 |
+
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
|
| 8 |
+
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
|
| 9 |
+
'''
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class BaseModel(torch.nn.Module):
|
| 15 |
+
def load(self, path):
|
| 16 |
+
"""Load model from file.
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
path (str): file path
|
| 20 |
+
"""
|
| 21 |
+
parameters = torch.load(path, map_location=torch.device('cpu'))
|
| 22 |
+
|
| 23 |
+
if "optimizer" in parameters:
|
| 24 |
+
parameters = parameters["model"]
|
| 25 |
+
|
| 26 |
+
self.load_state_dict(parameters)
|