Rohith1112 commited on
Commit
8435f90
·
verified ·
1 Parent(s): 80739ea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -30
app.py CHANGED
@@ -1,15 +1,15 @@
 
1
  import numpy as np
2
  import torch
3
  from transformers import AutoTokenizer, AutoModelForCausalLM
4
- import simple_slice_viewer as ssv
5
- import SimpleITK as sikt
6
  import gradio as gr
 
7
 
8
- device = torch.device('cpu') # Set to 'cuda' if using a GPU
9
- dtype = torch.float32 # Data type for model processing
10
-
11
  model_name_or_path = 'GoodBaiBai88/M3D-LaMed-Phi-3-4B'
12
- proj_out_num = 256 # Number of projection outputs required for the image
13
 
14
  # Load model and tokenizer
15
  model = AutoModelForCausalLM.from_pretrained(
@@ -27,35 +27,72 @@ tokenizer = AutoTokenizer.from_pretrained(
27
  trust_remote_code=True
28
  )
29
 
30
- def process_image(image_path, question):
31
- # Load the image
32
- image_np = np.load(image_path) # Load the .npy image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  image_tokens = "<im_patch>" * proj_out_num
34
  input_txt = image_tokens + question
35
  input_id = tokenizer(input_txt, return_tensors="pt")['input_ids'].to(device=device)
36
-
37
- # Prepare image for model
38
  image_pt = torch.from_numpy(image_np).unsqueeze(0).to(dtype=dtype, device=device)
39
-
40
- # Generate model response
41
  generation = model.generate(image_pt, input_id, max_new_tokens=256, do_sample=True, top_p=0.9, temperature=1.0)
42
  generated_texts = tokenizer.batch_decode(generation, skip_special_tokens=True)
43
-
44
  return generated_texts[0]
45
 
46
- # Gradio Interface
47
- def gradio_interface(image, question):
48
- response = process_image(image.name, question)
49
- return response
50
-
51
- # Gradio App
52
- gr.Interface(
53
- fn=gradio_interface,
54
- inputs=[
55
- gr.File(label="Upload .npy Image", type="filepath"), # For uploading .npy image
56
- gr.Textbox(label="Enter your question", placeholder="Ask something about the image..."),
57
- ],
58
- outputs=gr.Textbox(label="Model Response"),
59
- title="Medical Image Analysis",
60
- description="Upload a .npy image and ask a question to analyze it using the model."
61
- ).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
  import numpy as np
3
  import torch
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
 
 
5
  import gradio as gr
6
+ import matplotlib.pyplot as plt
7
 
8
+ # Model setup
9
+ device = torch.device('cpu') # Use 'cuda' if GPU is available
10
+ dtype = torch.float32
11
  model_name_or_path = 'GoodBaiBai88/M3D-LaMed-Phi-3-4B'
12
+ proj_out_num = 256
13
 
14
  # Load model and tokenizer
15
  model = AutoModelForCausalLM.from_pretrained(
 
27
  trust_remote_code=True
28
  )
29
 
30
+ # Chat history storage
31
+ chat_history = []
32
+ current_image = None
33
+
34
+ def extract_and_display_images(image_path):
35
+ npy_data = np.load(image_path)
36
+ if npy_data.ndim == 4 and npy_data.shape[1] == 32:
37
+ npy_data = npy_data[0]
38
+ elif npy_data.ndim != 3 or npy_data.shape[0] != 32:
39
+ return "Invalid .npy file format. Expected shape (1, 32, 256, 256) or (32, 256, 256)."
40
+
41
+ fig, axes = plt.subplots(4, 8, figsize=(12, 6))
42
+ for i, ax in enumerate(axes.flat):
43
+ ax.imshow(npy_data[i], cmap='gray')
44
+ ax.axis('off')
45
+
46
+ image_output = "extracted_images.png"
47
+ plt.savefig(image_output, bbox_inches='tight')
48
+ plt.close()
49
+ return image_output
50
+
51
+
52
+ def process_image(question):
53
+ global current_image
54
+ if current_image is None:
55
+ return "Please upload an image first."
56
+
57
+ image_np = np.load(current_image)
58
  image_tokens = "<im_patch>" * proj_out_num
59
  input_txt = image_tokens + question
60
  input_id = tokenizer(input_txt, return_tensors="pt")['input_ids'].to(device=device)
61
+
 
62
  image_pt = torch.from_numpy(image_np).unsqueeze(0).to(dtype=dtype, device=device)
 
 
63
  generation = model.generate(image_pt, input_id, max_new_tokens=256, do_sample=True, top_p=0.9, temperature=1.0)
64
  generated_texts = tokenizer.batch_decode(generation, skip_special_tokens=True)
 
65
  return generated_texts[0]
66
 
67
+
68
+ def chat_interface(question):
69
+ global chat_history
70
+ response = process_image(question)
71
+ chat_history.append((question, response))
72
+ return chat_history
73
+
74
+
75
+ def upload_image(image):
76
+ global current_image
77
+ current_image = image.name
78
+ extracted_image_path = extract_and_display_images(current_image)
79
+ return "Image uploaded and processed successfully!", extracted_image_path
80
+
81
+ # Gradio UI
82
+ with gr.Blocks(theme=gr.themes.Soft()) as chat_ui:
83
+ gr.Markdown("ICliniq AI-Powered Medical Image Analysis Workspace")
84
+ with gr.Row():
85
+ with gr.Column(scale=1, min_width=200):
86
+ chat_list = gr.Chatbot(value=[], label="Chat History", elem_id="chat-history")
87
+ with gr.Column(scale=4):
88
+ uploaded_image = gr.File(label="Upload .npy Image", type="filepath")
89
+ upload_status = gr.Textbox(label="Status", interactive=False)
90
+ extracted_image = gr.Image(label="Extracted Images")
91
+ question_input = gr.Textbox(label="Ask a question", placeholder="Ask something about the image...")
92
+ submit_button = gr.Button("Send")
93
+
94
+ uploaded_image.upload(upload_image, uploaded_image, [upload_status, extracted_image])
95
+ submit_button.click(chat_interface, question_input, chat_list)
96
+ question_input.submit(chat_interface, question_input, chat_list)
97
+
98
+ chat_ui.launch()