Spaces:
Sleeping
Sleeping
update
Browse files
app.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
-
import os
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
5 |
import gradio as gr
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
model_name_or_path = 'GoodBaiBai88/M3D-LaMed-Phi-3-4B'
|
12 |
-
proj_out_num = 256
|
13 |
|
14 |
# Load model and tokenizer
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -27,72 +27,35 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
27 |
trust_remote_code=True
|
28 |
)
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
def extract_and_display_images(image_path):
|
35 |
-
npy_data = np.load(image_path)
|
36 |
-
if npy_data.ndim == 4 and npy_data.shape[1] == 32:
|
37 |
-
npy_data = npy_data[0]
|
38 |
-
elif npy_data.ndim != 3 or npy_data.shape[0] != 32:
|
39 |
-
return "Invalid .npy file format. Expected shape (1, 32, 256, 256) or (32, 256, 256)."
|
40 |
-
|
41 |
-
fig, axes = plt.subplots(4, 8, figsize=(12, 6))
|
42 |
-
for i, ax in enumerate(axes.flat):
|
43 |
-
ax.imshow(npy_data[i], cmap='gray')
|
44 |
-
ax.axis('off')
|
45 |
-
|
46 |
-
image_output = "extracted_images.png"
|
47 |
-
plt.savefig(image_output, bbox_inches='tight')
|
48 |
-
plt.close()
|
49 |
-
return image_output
|
50 |
-
|
51 |
-
|
52 |
-
def process_image(question):
|
53 |
-
global current_image
|
54 |
-
if current_image is None:
|
55 |
-
return "Please upload an image first."
|
56 |
-
|
57 |
-
image_np = np.load(current_image)
|
58 |
image_tokens = "<im_patch>" * proj_out_num
|
59 |
input_txt = image_tokens + question
|
60 |
input_id = tokenizer(input_txt, return_tensors="pt")['input_ids'].to(device=device)
|
61 |
-
|
|
|
62 |
image_pt = torch.from_numpy(image_np).unsqueeze(0).to(dtype=dtype, device=device)
|
|
|
|
|
63 |
generation = model.generate(image_pt, input_id, max_new_tokens=256, do_sample=True, top_p=0.9, temperature=1.0)
|
64 |
generated_texts = tokenizer.batch_decode(generation, skip_special_tokens=True)
|
65 |
-
return generated_texts[0]
|
66 |
-
|
67 |
-
|
68 |
-
def chat_interface(question):
|
69 |
-
global chat_history
|
70 |
-
response = process_image(question)
|
71 |
-
chat_history.append((question, response))
|
72 |
-
return chat_history
|
73 |
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
question_input = gr.Textbox(label="Ask a question", placeholder="Ask something about the image...")
|
92 |
-
submit_button = gr.Button("Send")
|
93 |
-
|
94 |
-
uploaded_image.upload(upload_image, uploaded_image, [upload_status, extracted_image])
|
95 |
-
submit_button.click(chat_interface, question_input, chat_list)
|
96 |
-
question_input.submit(chat_interface, question_input, chat_list)
|
97 |
-
|
98 |
-
chat_ui.launch()
|
|
|
|
|
1 |
import numpy as np
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import simple_slice_viewer as ssv
|
5 |
+
import SimpleITK as sikt
|
6 |
import gradio as gr
|
|
|
7 |
|
8 |
+
device = torch.device('cpu') # Set to 'cuda' if using a GPU
|
9 |
+
dtype = torch.float32 # Data type for model processing
|
10 |
+
|
11 |
model_name_or_path = 'GoodBaiBai88/M3D-LaMed-Phi-3-4B'
|
12 |
+
proj_out_num = 256 # Number of projection outputs required for the image
|
13 |
|
14 |
# Load model and tokenizer
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
27 |
trust_remote_code=True
|
28 |
)
|
29 |
|
30 |
+
def process_image(image_path, question):
|
31 |
+
# Load the image
|
32 |
+
image_np = np.load(image_path) # Load the .npy image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
image_tokens = "<im_patch>" * proj_out_num
|
34 |
input_txt = image_tokens + question
|
35 |
input_id = tokenizer(input_txt, return_tensors="pt")['input_ids'].to(device=device)
|
36 |
+
|
37 |
+
# Prepare image for model
|
38 |
image_pt = torch.from_numpy(image_np).unsqueeze(0).to(dtype=dtype, device=device)
|
39 |
+
|
40 |
+
# Generate model response
|
41 |
generation = model.generate(image_pt, input_id, max_new_tokens=256, do_sample=True, top_p=0.9, temperature=1.0)
|
42 |
generated_texts = tokenizer.batch_decode(generation, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
return generated_texts[0]
|
45 |
|
46 |
+
# Gradio Interface
|
47 |
+
def gradio_interface(image, question):
|
48 |
+
response = process_image(image.name, question)
|
49 |
+
return response
|
50 |
+
|
51 |
+
# Gradio App
|
52 |
+
gr.Interface(
|
53 |
+
fn=gradio_interface,
|
54 |
+
inputs=[
|
55 |
+
gr.File(label="Upload .npy Image", type="filepath"), # For uploading .npy image
|
56 |
+
gr.Textbox(label="Enter your question", placeholder="Ask something about the image..."),
|
57 |
+
],
|
58 |
+
outputs=gr.Textbox(label="Model Response"),
|
59 |
+
title="Medical Image Analysis",
|
60 |
+
description="Upload a .npy image and ask a question to analyze it using the model."
|
61 |
+
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|