Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,201 +4,95 @@ import torch
|
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import gradio as gr
|
6 |
import matplotlib.pyplot as plt
|
7 |
-
from datetime import datetime
|
8 |
-
import json
|
9 |
-
from PIL import Image
|
10 |
|
11 |
# Model setup
|
12 |
-
device = torch.device('cuda' if
|
|
|
13 |
model_name_or_path = 'GoodBaiBai88/M3D-LaMed-Phi-3-4B'
|
14 |
proj_out_num = 256
|
15 |
|
16 |
-
# Create directory for saving chat histories and temp images
|
17 |
-
os.makedirs('chat_histories', exist_ok=True)
|
18 |
-
os.makedirs('temp_images', exist_ok=True)
|
19 |
-
|
20 |
# Load model and tokenizer
|
21 |
-
print("Loading model and tokenizer...")
|
22 |
model = AutoModelForCausalLM.from_pretrained(
|
23 |
model_name_or_path,
|
24 |
-
torch_dtype=torch.
|
25 |
-
device_map=
|
26 |
trust_remote_code=True
|
27 |
)
|
28 |
|
29 |
tokenizer = AutoTokenizer.from_pretrained(
|
30 |
model_name_or_path,
|
31 |
-
model_max_length=
|
32 |
padding_side="right",
|
33 |
use_fast=False,
|
34 |
trust_remote_code=True
|
35 |
)
|
36 |
-
print("Model loaded successfully!")
|
37 |
|
38 |
-
#
|
39 |
chat_history = []
|
40 |
-
|
41 |
-
session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
|
42 |
-
chat_metadata = {
|
43 |
-
"session_id": session_id,
|
44 |
-
"start_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
45 |
-
"image_info": None
|
46 |
-
}
|
47 |
-
|
48 |
-
def save_chat_history():
|
49 |
-
"""Save the chat history into a JSON file."""
|
50 |
-
if not chat_history:
|
51 |
-
return
|
52 |
-
filename = f"chat_histories/session_{session_id}.json"
|
53 |
-
data = {
|
54 |
-
"metadata": chat_metadata,
|
55 |
-
"conversation": [{"user": q, "assistant": a} for q, a in chat_history]
|
56 |
-
}
|
57 |
-
with open(filename, 'w', encoding='utf-8') as f:
|
58 |
-
json.dump(data, f, ensure_ascii=False, indent=2)
|
59 |
-
return filename
|
60 |
|
61 |
def extract_and_display_images(image_path):
|
62 |
-
|
63 |
-
|
64 |
-
npy_data =
|
65 |
-
|
66 |
-
|
67 |
-
npy_data = npy_data[0] # Take first batch
|
68 |
-
|
69 |
-
if npy_data.shape[0] != 32:
|
70 |
-
return None, "Invalid .npy shape. Expected 32 slices."
|
71 |
-
|
72 |
-
# Normalize slices
|
73 |
-
npy_data = (npy_data - npy_data.min()) / (npy_data.max() - npy_data.min())
|
74 |
-
|
75 |
-
# Create visualization grid
|
76 |
-
fig, axes = plt.subplots(4, 8, figsize=(16, 8))
|
77 |
-
for i, ax in enumerate(axes.flat):
|
78 |
-
ax.imshow(npy_data[i], cmap='gray')
|
79 |
-
ax.axis('off')
|
80 |
-
ax.set_title(f"Slice {i+1}", fontsize=8)
|
81 |
-
|
82 |
-
plt.tight_layout()
|
83 |
-
temp_png = f"temp_images/preview_{session_id}.png"
|
84 |
-
plt.savefig(temp_png, dpi=150, bbox_inches='tight')
|
85 |
-
plt.close()
|
86 |
-
|
87 |
-
# Convert PNG to JPEG if needed
|
88 |
-
img = Image.open(temp_png).convert("RGB")
|
89 |
-
temp_jpeg = f"temp_images/preview_{session_id}.jpg"
|
90 |
-
img.save(temp_jpeg, format="JPEG", quality=95)
|
91 |
-
|
92 |
-
# Update metadata
|
93 |
-
chat_metadata["image_info"] = {
|
94 |
-
"filename": os.path.basename(image_path),
|
95 |
-
"shape": npy_data.shape,
|
96 |
-
"processed_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
97 |
-
}
|
98 |
-
|
99 |
-
return temp_jpeg, "Image processed successfully!"
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
image_tokens = "<im_patch>" * proj_out_num
|
111 |
-
input_prompt = image_tokens + question
|
112 |
-
|
113 |
-
# Tokenize input
|
114 |
-
input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids.to(device)
|
115 |
|
116 |
-
# Generate answer
|
117 |
-
output = model.generate(
|
118 |
-
input_ids=input_ids,
|
119 |
-
max_new_tokens=256,
|
120 |
-
do_sample=True,
|
121 |
-
top_p=0.9,
|
122 |
-
temperature=0.7
|
123 |
-
)
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
return answer.strip()
|
130 |
-
except Exception as e:
|
131 |
-
return f"Error answering question: {str(e)}"
|
132 |
|
133 |
def chat_interface(question):
|
134 |
-
"""Handles chat conversation."""
|
135 |
global chat_history
|
136 |
-
|
137 |
-
return chat_history
|
138 |
-
|
139 |
-
response = process_image_question(question)
|
140 |
chat_history.append((question, response))
|
141 |
-
save_chat_history()
|
142 |
return chat_history
|
143 |
|
144 |
-
def upload_image(image):
|
145 |
-
"""Handles image upload."""
|
146 |
-
global current_image_path
|
147 |
-
if image is None:
|
148 |
-
return "No file uploaded.", None
|
149 |
-
|
150 |
-
if not image.name.lower().endswith('.npy'):
|
151 |
-
return "Please upload a .npy file only.", None
|
152 |
-
|
153 |
-
current_image_path = image.name
|
154 |
-
extracted_image_path, status_message = extract_and_display_images(current_image_path)
|
155 |
-
if extracted_image_path is None:
|
156 |
-
return status_message, None
|
157 |
-
|
158 |
-
return status_message, extracted_image_path
|
159 |
-
|
160 |
-
def clear_conversation():
|
161 |
-
"""Clears chat conversation."""
|
162 |
-
global chat_history
|
163 |
-
old_chat = chat_history.copy()
|
164 |
-
chat_history = []
|
165 |
-
return [], f"Conversation cleared. Saved to {save_chat_history()}."
|
166 |
-
|
167 |
-
# Custom CSS
|
168 |
-
custom_css = """
|
169 |
-
.gradio-container {max-width: 1200px !important}
|
170 |
-
#chat-history {height: 400px; overflow-y: auto;}
|
171 |
-
"""
|
172 |
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
with gr.Row():
|
176 |
-
with gr.Column(scale=
|
177 |
-
gr.
|
178 |
-
gr.Markdown("""
|
179 |
-
Upload a **.npy** medical scan file, view extracted slices, and ask clinical questions.
|
180 |
-
""")
|
181 |
-
uploaded_image = gr.File(label="Upload Medical Image (.npy)", file_types=[".npy"], type="filepath")
|
182 |
-
upload_status = gr.Textbox(label="Upload Status", interactive=False)
|
183 |
-
extracted_image = gr.Image(label="Preview of Medical Image", elem_id="image-preview")
|
184 |
-
|
185 |
with gr.Column(scale=4):
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
uploaded_image.upload(upload_image, inputs=[uploaded_image], outputs=[upload_status, extracted_image])
|
197 |
-
submit_button.click(chat_interface, inputs=[question_input], outputs=[chat_list]).then(lambda: "", outputs=question_input)
|
198 |
-
question_input.submit(chat_interface, inputs=[question_input], outputs=[chat_list]).then(lambda: "", outputs=question_input)
|
199 |
-
clear_button.click(clear_conversation, inputs=[], outputs=[chat_list, system_status])
|
200 |
|
201 |
-
|
202 |
-
if __name__ == "__main__":
|
203 |
-
print("Launching Medical Image Analyzer...")
|
204 |
-
demo.launch(share=True)
|
|
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import gradio as gr
|
6 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
7 |
|
8 |
# Model setup
|
9 |
+
device = torch.device('cpu') # Use 'cuda' if GPU is available
|
10 |
+
dtype = torch.float32
|
11 |
model_name_or_path = 'GoodBaiBai88/M3D-LaMed-Phi-3-4B'
|
12 |
proj_out_num = 256
|
13 |
|
|
|
|
|
|
|
|
|
14 |
# Load model and tokenizer
|
|
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
16 |
model_name_or_path,
|
17 |
+
torch_dtype=torch.float32,
|
18 |
+
device_map='cpu',
|
19 |
trust_remote_code=True
|
20 |
)
|
21 |
|
22 |
tokenizer = AutoTokenizer.from_pretrained(
|
23 |
model_name_or_path,
|
24 |
+
model_max_length=512,
|
25 |
padding_side="right",
|
26 |
use_fast=False,
|
27 |
trust_remote_code=True
|
28 |
)
|
|
|
29 |
|
30 |
+
# Chat history storage
|
31 |
chat_history = []
|
32 |
+
current_image = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
def extract_and_display_images(image_path):
|
35 |
+
npy_data = np.load(image_path)
|
36 |
+
if npy_data.ndim == 4 and npy_data.shape[1] == 32:
|
37 |
+
npy_data = npy_data[0]
|
38 |
+
elif npy_data.ndim != 3 or npy_data.shape[0] != 32:
|
39 |
+
return "Invalid .npy file format. Expected shape (1, 32, 256, 256) or (32, 256, 256)."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
fig, axes = plt.subplots(4, 8, figsize=(12, 6))
|
42 |
+
for i, ax in enumerate(axes.flat):
|
43 |
+
ax.imshow(npy_data[i], cmap='gray')
|
44 |
+
ax.axis('off')
|
45 |
+
|
46 |
+
image_output = "extracted_images.png"
|
47 |
+
plt.savefig(image_output, bbox_inches='tight')
|
48 |
+
plt.close()
|
49 |
+
return image_output
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
def process_image(question):
|
53 |
+
global current_image
|
54 |
+
if current_image is None:
|
55 |
+
return "Please upload an image first."
|
56 |
+
|
57 |
+
image_np = np.load(current_image)
|
58 |
+
image_tokens = "<im_patch>" * proj_out_num
|
59 |
+
input_txt = image_tokens + question
|
60 |
+
input_id = tokenizer(input_txt, return_tensors="pt")['input_ids'].to(device=device)
|
61 |
+
|
62 |
+
image_pt = torch.from_numpy(image_np).unsqueeze(0).to(dtype=dtype, device=device)
|
63 |
+
generation = model.generate(image_pt, input_id, max_new_tokens=256, do_sample=True, top_p=0.9, temperature=1.0)
|
64 |
+
generated_texts = tokenizer.batch_decode(generation, skip_special_tokens=True)
|
65 |
+
return generated_texts[0]
|
66 |
|
|
|
|
|
|
|
67 |
|
68 |
def chat_interface(question):
|
|
|
69 |
global chat_history
|
70 |
+
response = process_image(question)
|
|
|
|
|
|
|
71 |
chat_history.append((question, response))
|
|
|
72 |
return chat_history
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
def upload_image(image):
|
76 |
+
global current_image
|
77 |
+
current_image = image.name
|
78 |
+
extracted_image_path = extract_and_display_images(current_image)
|
79 |
+
return "Image uploaded and processed successfully!", extracted_image_path
|
80 |
+
|
81 |
+
# Gradio UI
|
82 |
+
with gr.Blocks(theme=gr.themes.Soft()) as chat_ui:
|
83 |
+
gr.Markdown("ICliniq AI-Powered Medical Image Analysis Workspace")
|
84 |
with gr.Row():
|
85 |
+
with gr.Column(scale=1, min_width=200):
|
86 |
+
chat_list = gr.Chatbot(value=[], label="Chat History", elem_id="chat-history")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
with gr.Column(scale=4):
|
88 |
+
uploaded_image = gr.File(label="Upload .npy Image", type="filepath")
|
89 |
+
upload_status = gr.Textbox(label="Status", interactive=False)
|
90 |
+
extracted_image = gr.Image(label="Extracted Images")
|
91 |
+
question_input = gr.Textbox(label="Ask a question", placeholder="Ask something about the image...")
|
92 |
+
submit_button = gr.Button("Send")
|
93 |
+
|
94 |
+
uploaded_image.upload(upload_image, uploaded_image, [upload_status, extracted_image])
|
95 |
+
submit_button.click(chat_interface, question_input, chat_list)
|
96 |
+
question_input.submit(chat_interface, question_input, chat_list)
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
chat_ui.launch()
|
|
|
|
|
|