Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,37 +6,38 @@ import gradio as gr
|
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
from datetime import datetime
|
| 8 |
import json
|
|
|
|
| 9 |
|
| 10 |
# Model setup
|
| 11 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 12 |
-
dtype = torch.float32
|
| 13 |
model_name_or_path = 'GoodBaiBai88/M3D-LaMed-Phi-3-4B'
|
| 14 |
proj_out_num = 256
|
| 15 |
|
| 16 |
-
# Create directory for saving chat histories
|
| 17 |
os.makedirs('chat_histories', exist_ok=True)
|
|
|
|
| 18 |
|
| 19 |
# Load model and tokenizer
|
| 20 |
print("Loading model and tokenizer...")
|
| 21 |
model = AutoModelForCausalLM.from_pretrained(
|
| 22 |
model_name_or_path,
|
| 23 |
-
torch_dtype=torch.float32,
|
| 24 |
-
device_map=
|
| 25 |
trust_remote_code=True
|
| 26 |
)
|
| 27 |
|
| 28 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 29 |
model_name_or_path,
|
| 30 |
-
model_max_length=
|
| 31 |
padding_side="right",
|
| 32 |
use_fast=False,
|
| 33 |
trust_remote_code=True
|
| 34 |
)
|
| 35 |
print("Model loaded successfully!")
|
| 36 |
|
| 37 |
-
#
|
| 38 |
chat_history = []
|
| 39 |
-
|
| 40 |
session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 41 |
chat_metadata = {
|
| 42 |
"session_id": session_id,
|
|
@@ -45,252 +46,159 @@ chat_metadata = {
|
|
| 45 |
}
|
| 46 |
|
| 47 |
def save_chat_history():
|
| 48 |
-
"""Save the
|
| 49 |
if not chat_history:
|
| 50 |
return
|
| 51 |
-
|
| 52 |
filename = f"chat_histories/session_{session_id}.json"
|
| 53 |
data = {
|
| 54 |
"metadata": chat_metadata,
|
| 55 |
"conversation": [{"user": q, "assistant": a} for q, a in chat_history]
|
| 56 |
}
|
| 57 |
-
|
| 58 |
with open(filename, 'w', encoding='utf-8') as f:
|
| 59 |
json.dump(data, f, ensure_ascii=False, indent=2)
|
| 60 |
-
|
| 61 |
return filename
|
| 62 |
|
| 63 |
def extract_and_display_images(image_path):
|
| 64 |
-
"""
|
| 65 |
try:
|
| 66 |
npy_data = np.load(image_path)
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
npy_data = npy_data[0] # Extract first batch if batched
|
| 71 |
-
elif npy_data.ndim != 3 or npy_data.shape[0] != 32:
|
| 72 |
-
return None, "Invalid .npy file format. Expected shape (1, 32, 256, 256) or (32, 256, 256)."
|
| 73 |
-
|
| 74 |
-
# Update metadata with image information
|
| 75 |
-
global chat_metadata
|
| 76 |
-
chat_metadata["image_info"] = {
|
| 77 |
-
"filename": os.path.basename(image_path),
|
| 78 |
-
"shape": npy_data.shape,
|
| 79 |
-
"processed_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 80 |
-
}
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
|
| 88 |
-
# Create grid
|
| 89 |
-
|
| 90 |
-
fig, axes = plt.subplots(rows, cols, figsize=(16, 8))
|
| 91 |
for i, ax in enumerate(axes.flat):
|
| 92 |
-
|
| 93 |
-
ax.imshow(npy_data[i], cmap='gray')
|
| 94 |
-
ax.set_title(f"Slice {i+1}", fontsize=8)
|
| 95 |
ax.axis('off')
|
|
|
|
| 96 |
|
| 97 |
plt.tight_layout()
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
plt.savefig(image_output, bbox_inches='tight', dpi=150)
|
| 101 |
plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
except Exception as e:
|
| 105 |
-
return None, f"Error
|
| 106 |
|
| 107 |
-
def
|
| 108 |
-
"""Process
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
if current_image is None:
|
| 112 |
-
return "Please upload a medical image (.npy file) first."
|
| 113 |
-
|
| 114 |
try:
|
| 115 |
-
#
|
| 116 |
-
image_np = np.load(current_image)
|
| 117 |
-
|
| 118 |
-
# Prepare input for the model
|
| 119 |
image_tokens = "<im_patch>" * proj_out_num
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
top_p=0.9,
|
| 133 |
-
temperature=0.8 # Slightly reduced for more consistent responses
|
| 134 |
)
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
generated_text = generated_text.split(image_tokens)[-1]
|
| 142 |
-
|
| 143 |
-
return generated_text
|
| 144 |
-
|
| 145 |
except Exception as e:
|
| 146 |
-
return f"Error
|
| 147 |
|
| 148 |
def chat_interface(question):
|
| 149 |
-
"""
|
| 150 |
global chat_history
|
| 151 |
-
|
| 152 |
if not question.strip():
|
| 153 |
return chat_history
|
| 154 |
|
| 155 |
-
|
| 156 |
-
response = process_image(question)
|
| 157 |
-
|
| 158 |
-
# Add to chat history
|
| 159 |
chat_history.append((question, response))
|
| 160 |
-
|
| 161 |
-
# Save chat history periodically
|
| 162 |
save_chat_history()
|
| 163 |
-
|
| 164 |
-
# Return the updated chat history for display
|
| 165 |
return chat_history
|
| 166 |
|
| 167 |
def upload_image(image):
|
| 168 |
-
"""
|
| 169 |
-
global
|
| 170 |
-
|
| 171 |
if image is None:
|
| 172 |
return "No file uploaded.", None
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
current_image = image.name
|
| 180 |
-
|
| 181 |
-
# Process and extract images
|
| 182 |
-
extracted_image_path, status_message = extract_and_display_images(current_image)
|
| 183 |
-
|
| 184 |
if extracted_image_path is None:
|
| 185 |
return status_message, None
|
| 186 |
|
| 187 |
return status_message, extracted_image_path
|
| 188 |
|
| 189 |
def clear_conversation():
|
| 190 |
-
"""
|
| 191 |
global chat_history
|
| 192 |
-
|
| 193 |
chat_history = []
|
| 194 |
-
return [], f"Conversation cleared.
|
| 195 |
|
| 196 |
-
# CSS
|
| 197 |
custom_css = """
|
| 198 |
.gradio-container {max-width: 1200px !important}
|
| 199 |
#chat-history {height: 400px; overflow-y: auto;}
|
| 200 |
-
.image-preview {border-radius: 10px; border: 1px solid #ddd;}
|
| 201 |
"""
|
| 202 |
|
| 203 |
-
# Gradio UI
|
| 204 |
-
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as
|
| 205 |
with gr.Row():
|
| 206 |
with gr.Column(scale=3):
|
| 207 |
-
gr.Markdown("# ICliniq AI-
|
| 208 |
gr.Markdown("""
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
""")
|
| 216 |
-
|
| 217 |
-
with gr.Row():
|
| 218 |
-
with gr.Column(scale=1):
|
| 219 |
-
uploaded_image = gr.File(
|
| 220 |
-
label="Upload Medical Image (.npy format)",
|
| 221 |
-
file_types=[".npy"],
|
| 222 |
-
type="filepath"
|
| 223 |
-
)
|
| 224 |
-
|
| 225 |
-
with gr.Column(scale=1):
|
| 226 |
-
upload_status = gr.Textbox(
|
| 227 |
-
label="Upload Status",
|
| 228 |
-
interactive=False
|
| 229 |
-
)
|
| 230 |
-
|
| 231 |
-
extracted_image = gr.Image(
|
| 232 |
-
label="Processed Image Preview",
|
| 233 |
-
elem_id="image-preview"
|
| 234 |
-
)
|
| 235 |
-
|
| 236 |
with gr.Column(scale=4):
|
| 237 |
-
chat_list = gr.Chatbot(
|
| 238 |
-
|
| 239 |
-
label="Conversation",
|
| 240 |
-
elem_id="chat-history",
|
| 241 |
-
height=500
|
| 242 |
-
)
|
| 243 |
-
|
| 244 |
-
with gr.Row():
|
| 245 |
-
question_input = gr.Textbox(
|
| 246 |
-
label="Ask about the medical image",
|
| 247 |
-
placeholder="What abnormalities do you see in this scan?",
|
| 248 |
-
lines=2
|
| 249 |
-
)
|
| 250 |
-
|
| 251 |
with gr.Row():
|
| 252 |
-
clear_button = gr.Button("Clear Conversation", variant="secondary")
|
| 253 |
submit_button = gr.Button("Send Question", variant="primary")
|
| 254 |
-
|
| 255 |
-
gr.Markdown("### System Status")
|
| 256 |
system_status = gr.Textbox(
|
| 257 |
-
label="",
|
| 258 |
value=f"Model loaded: {model_name_or_path}\nDevice: {device}\nSession ID: {session_id}",
|
| 259 |
interactive=False
|
| 260 |
)
|
| 261 |
-
|
| 262 |
-
# Set up event handlers
|
| 263 |
-
uploaded_image.upload(
|
| 264 |
-
upload_image,
|
| 265 |
-
inputs=[uploaded_image],
|
| 266 |
-
outputs=[upload_status, extracted_image]
|
| 267 |
-
)
|
| 268 |
-
|
| 269 |
-
submit_button.click(
|
| 270 |
-
chat_interface,
|
| 271 |
-
inputs=[question_input],
|
| 272 |
-
outputs=[chat_list]
|
| 273 |
-
).then(
|
| 274 |
-
lambda: "", # Clear input after sending
|
| 275 |
-
outputs=question_input
|
| 276 |
-
)
|
| 277 |
-
|
| 278 |
-
question_input.submit(
|
| 279 |
-
chat_interface,
|
| 280 |
-
inputs=[question_input],
|
| 281 |
-
outputs=[chat_list]
|
| 282 |
-
).then(
|
| 283 |
-
lambda: "", # Clear input after sending
|
| 284 |
-
outputs=question_input
|
| 285 |
-
)
|
| 286 |
-
|
| 287 |
-
clear_button.click(
|
| 288 |
-
clear_conversation,
|
| 289 |
-
inputs=[],
|
| 290 |
-
outputs=[chat_list, system_status]
|
| 291 |
-
)
|
| 292 |
|
| 293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
if __name__ == "__main__":
|
| 295 |
-
print("
|
| 296 |
-
|
|
|
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
from datetime import datetime
|
| 8 |
import json
|
| 9 |
+
from PIL import Image
|
| 10 |
|
| 11 |
# Model setup
|
| 12 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
| 13 |
model_name_or_path = 'GoodBaiBai88/M3D-LaMed-Phi-3-4B'
|
| 14 |
proj_out_num = 256
|
| 15 |
|
| 16 |
+
# Create directory for saving chat histories and temp images
|
| 17 |
os.makedirs('chat_histories', exist_ok=True)
|
| 18 |
+
os.makedirs('temp_images', exist_ok=True)
|
| 19 |
|
| 20 |
# Load model and tokenizer
|
| 21 |
print("Loading model and tokenizer...")
|
| 22 |
model = AutoModelForCausalLM.from_pretrained(
|
| 23 |
model_name_or_path,
|
| 24 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 25 |
+
device_map="auto",
|
| 26 |
trust_remote_code=True
|
| 27 |
)
|
| 28 |
|
| 29 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 30 |
model_name_or_path,
|
| 31 |
+
model_max_length=4096,
|
| 32 |
padding_side="right",
|
| 33 |
use_fast=False,
|
| 34 |
trust_remote_code=True
|
| 35 |
)
|
| 36 |
print("Model loaded successfully!")
|
| 37 |
|
| 38 |
+
# Session and chat history
|
| 39 |
chat_history = []
|
| 40 |
+
current_image_path = None
|
| 41 |
session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 42 |
chat_metadata = {
|
| 43 |
"session_id": session_id,
|
|
|
|
| 46 |
}
|
| 47 |
|
| 48 |
def save_chat_history():
|
| 49 |
+
"""Save the chat history into a JSON file."""
|
| 50 |
if not chat_history:
|
| 51 |
return
|
|
|
|
| 52 |
filename = f"chat_histories/session_{session_id}.json"
|
| 53 |
data = {
|
| 54 |
"metadata": chat_metadata,
|
| 55 |
"conversation": [{"user": q, "assistant": a} for q, a in chat_history]
|
| 56 |
}
|
|
|
|
| 57 |
with open(filename, 'w', encoding='utf-8') as f:
|
| 58 |
json.dump(data, f, ensure_ascii=False, indent=2)
|
|
|
|
| 59 |
return filename
|
| 60 |
|
| 61 |
def extract_and_display_images(image_path):
|
| 62 |
+
"""Extract slices from .npy medical file and create a JPEG preview."""
|
| 63 |
try:
|
| 64 |
npy_data = np.load(image_path)
|
| 65 |
|
| 66 |
+
if npy_data.ndim == 4:
|
| 67 |
+
npy_data = npy_data[0] # Take first batch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
if npy_data.shape[0] != 32:
|
| 70 |
+
return None, "Invalid .npy shape. Expected 32 slices."
|
| 71 |
+
|
| 72 |
+
# Normalize slices
|
| 73 |
+
npy_data = (npy_data - npy_data.min()) / (npy_data.max() - npy_data.min())
|
| 74 |
|
| 75 |
+
# Create visualization grid
|
| 76 |
+
fig, axes = plt.subplots(4, 8, figsize=(16, 8))
|
|
|
|
| 77 |
for i, ax in enumerate(axes.flat):
|
| 78 |
+
ax.imshow(npy_data[i], cmap='gray')
|
|
|
|
|
|
|
| 79 |
ax.axis('off')
|
| 80 |
+
ax.set_title(f"Slice {i+1}", fontsize=8)
|
| 81 |
|
| 82 |
plt.tight_layout()
|
| 83 |
+
temp_png = f"temp_images/preview_{session_id}.png"
|
| 84 |
+
plt.savefig(temp_png, dpi=150, bbox_inches='tight')
|
|
|
|
| 85 |
plt.close()
|
| 86 |
+
|
| 87 |
+
# Convert PNG to JPEG if needed
|
| 88 |
+
img = Image.open(temp_png).convert("RGB")
|
| 89 |
+
temp_jpeg = f"temp_images/preview_{session_id}.jpg"
|
| 90 |
+
img.save(temp_jpeg, format="JPEG", quality=95)
|
| 91 |
|
| 92 |
+
# Update metadata
|
| 93 |
+
chat_metadata["image_info"] = {
|
| 94 |
+
"filename": os.path.basename(image_path),
|
| 95 |
+
"shape": npy_data.shape,
|
| 96 |
+
"processed_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
return temp_jpeg, "Image processed successfully!"
|
| 100 |
+
|
| 101 |
except Exception as e:
|
| 102 |
+
return None, f"Error: {str(e)}"
|
| 103 |
|
| 104 |
+
def process_image_question(question):
|
| 105 |
+
"""Process user question about uploaded medical image."""
|
| 106 |
+
if current_image_path is None:
|
| 107 |
+
return "Please upload a medical image first."
|
|
|
|
|
|
|
|
|
|
| 108 |
try:
|
| 109 |
+
# Create fake image patch tokens
|
|
|
|
|
|
|
|
|
|
| 110 |
image_tokens = "<im_patch>" * proj_out_num
|
| 111 |
+
input_prompt = image_tokens + question
|
| 112 |
+
|
| 113 |
+
# Tokenize input
|
| 114 |
+
input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids.to(device)
|
| 115 |
+
|
| 116 |
+
# Generate answer
|
| 117 |
+
output = model.generate(
|
| 118 |
+
input_ids=input_ids,
|
| 119 |
+
max_new_tokens=256,
|
| 120 |
+
do_sample=True,
|
| 121 |
+
top_p=0.9,
|
| 122 |
+
temperature=0.7
|
|
|
|
|
|
|
| 123 |
)
|
| 124 |
+
|
| 125 |
+
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 126 |
+
if image_tokens in answer:
|
| 127 |
+
answer = answer.split(image_tokens)[-1]
|
| 128 |
+
|
| 129 |
+
return answer.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
except Exception as e:
|
| 131 |
+
return f"Error answering question: {str(e)}"
|
| 132 |
|
| 133 |
def chat_interface(question):
|
| 134 |
+
"""Handles chat conversation."""
|
| 135 |
global chat_history
|
|
|
|
| 136 |
if not question.strip():
|
| 137 |
return chat_history
|
| 138 |
|
| 139 |
+
response = process_image_question(question)
|
|
|
|
|
|
|
|
|
|
| 140 |
chat_history.append((question, response))
|
|
|
|
|
|
|
| 141 |
save_chat_history()
|
|
|
|
|
|
|
| 142 |
return chat_history
|
| 143 |
|
| 144 |
def upload_image(image):
|
| 145 |
+
"""Handles image upload."""
|
| 146 |
+
global current_image_path
|
|
|
|
| 147 |
if image is None:
|
| 148 |
return "No file uploaded.", None
|
| 149 |
+
|
| 150 |
+
if not image.name.lower().endswith('.npy'):
|
| 151 |
+
return "Please upload a .npy file only.", None
|
| 152 |
+
|
| 153 |
+
current_image_path = image.name
|
| 154 |
+
extracted_image_path, status_message = extract_and_display_images(current_image_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
if extracted_image_path is None:
|
| 156 |
return status_message, None
|
| 157 |
|
| 158 |
return status_message, extracted_image_path
|
| 159 |
|
| 160 |
def clear_conversation():
|
| 161 |
+
"""Clears chat conversation."""
|
| 162 |
global chat_history
|
| 163 |
+
old_chat = chat_history.copy()
|
| 164 |
chat_history = []
|
| 165 |
+
return [], f"Conversation cleared. Saved to {save_chat_history()}."
|
| 166 |
|
| 167 |
+
# Custom CSS
|
| 168 |
custom_css = """
|
| 169 |
.gradio-container {max-width: 1200px !important}
|
| 170 |
#chat-history {height: 400px; overflow-y: auto;}
|
|
|
|
| 171 |
"""
|
| 172 |
|
| 173 |
+
# Build Gradio UI
|
| 174 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
| 175 |
with gr.Row():
|
| 176 |
with gr.Column(scale=3):
|
| 177 |
+
gr.Markdown("# 🏥 ICliniq AI - Medical Image Analyzer")
|
| 178 |
gr.Markdown("""
|
| 179 |
+
Upload a **.npy** medical scan file, view extracted slices, and ask clinical questions.
|
| 180 |
+
""")
|
| 181 |
+
uploaded_image = gr.File(label="Upload Medical Image (.npy)", file_types=[".npy"], type="filepath")
|
| 182 |
+
upload_status = gr.Textbox(label="Upload Status", interactive=False)
|
| 183 |
+
extracted_image = gr.Image(label="Preview of Medical Image", elem_id="image-preview")
|
| 184 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
with gr.Column(scale=4):
|
| 186 |
+
chat_list = gr.Chatbot(value=[], label="Conversation", elem_id="chat-history", height=500)
|
| 187 |
+
question_input = gr.Textbox(label="Ask your question", placeholder="e.g., Are there fractures visible?")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
with gr.Row():
|
|
|
|
| 189 |
submit_button = gr.Button("Send Question", variant="primary")
|
| 190 |
+
clear_button = gr.Button("Clear Conversation", variant="secondary")
|
|
|
|
| 191 |
system_status = gr.Textbox(
|
|
|
|
| 192 |
value=f"Model loaded: {model_name_or_path}\nDevice: {device}\nSession ID: {session_id}",
|
| 193 |
interactive=False
|
| 194 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
+
uploaded_image.upload(upload_image, inputs=[uploaded_image], outputs=[upload_status, extracted_image])
|
| 197 |
+
submit_button.click(chat_interface, inputs=[question_input], outputs=[chat_list]).then(lambda: "", outputs=question_input)
|
| 198 |
+
question_input.submit(chat_interface, inputs=[question_input], outputs=[chat_list]).then(lambda: "", outputs=question_input)
|
| 199 |
+
clear_button.click(clear_conversation, inputs=[], outputs=[chat_list, system_status])
|
| 200 |
+
|
| 201 |
+
# Run
|
| 202 |
if __name__ == "__main__":
|
| 203 |
+
print("Launching Medical Image Analyzer...")
|
| 204 |
+
demo.launch(share=True)
|