Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,25 +3,14 @@ from transformers import pipeline
|
|
3 |
import re
|
4 |
|
5 |
# Initialize pipelines
|
6 |
-
# Summarization pipeline with FLAN-T5
|
7 |
summarizer = pipeline("text2text-generation", model="google/flan-t5-small", tokenizer="google/flan-t5-small")
|
8 |
-
|
9 |
-
# Sentiment analysis pipeline
|
10 |
sentiment_analyzer = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest")
|
11 |
-
|
12 |
-
# Automatic speech recognition pipeline for audio
|
13 |
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-small")
|
14 |
|
15 |
def convert_to_json(transcript_text):
|
16 |
-
"""
|
17 |
-
Convert the transcript into a structured JSON format.
|
18 |
-
Attempts to identify speaker turns based on lines starting with 'Therapist:' or 'Client:'.
|
19 |
-
If no clear pattern is found, the entire transcript is considered one turn.
|
20 |
-
"""
|
21 |
lines = transcript_text.strip().split("\n")
|
22 |
session_data = []
|
23 |
|
24 |
-
# Regex patterns to identify lines with a speaker
|
25 |
therapist_pattern = re.compile(r"^\s*(Therapist|T):", re.IGNORECASE)
|
26 |
client_pattern = re.compile(r"^\s*(Client|C):", re.IGNORECASE)
|
27 |
|
@@ -31,61 +20,47 @@ def convert_to_json(transcript_text):
|
|
31 |
for line in lines:
|
32 |
line = line.strip()
|
33 |
if therapist_pattern.match(line):
|
34 |
-
# If we have accumulated text from previous speaker, store it
|
35 |
if current_speaker and current_text:
|
36 |
session_data.append({"speaker": current_speaker, "text": " ".join(current_text).strip()})
|
37 |
current_text = []
|
38 |
-
|
39 |
current_speaker = "Therapist"
|
40 |
-
# Remove the speaker prefix
|
41 |
text_part = therapist_pattern.sub("", line).strip()
|
42 |
current_text.append(text_part)
|
43 |
-
|
44 |
elif client_pattern.match(line):
|
45 |
if current_speaker and current_text:
|
46 |
session_data.append({"speaker": current_speaker, "text": " ".join(current_text).strip()})
|
47 |
current_text = []
|
48 |
-
|
49 |
current_speaker = "Client"
|
50 |
text_part = client_pattern.sub("", line).strip()
|
51 |
current_text.append(text_part)
|
52 |
-
|
53 |
else:
|
54 |
-
# Just text, append to current speaker's segment if identified
|
55 |
if current_speaker is None:
|
56 |
-
# No speaker identified yet, assume unknown
|
57 |
current_speaker = "Unknown"
|
58 |
current_text.append(line)
|
59 |
|
60 |
-
# Append the last collected segment
|
61 |
if current_speaker and current_text:
|
62 |
session_data.append({"speaker": current_speaker, "text": " ".join(current_text).strip()})
|
63 |
|
64 |
-
# If no speakers identified at all and just one big chunk, still return it as JSON
|
65 |
if not session_data:
|
66 |
session_data = [{"speaker": "Unknown", "text": transcript_text.strip()}]
|
67 |
|
68 |
-
# Create a final JSON structure
|
69 |
json_data = {"session": session_data}
|
70 |
return json_data
|
71 |
|
72 |
def analyze_session(transcript, custom_instruction, audio):
|
73 |
-
# If audio is provided,
|
74 |
if audio is not None:
|
75 |
-
#
|
76 |
asr_result = asr_pipeline(audio)
|
77 |
transcript_text = asr_result['text']
|
78 |
else:
|
79 |
-
# Use the provided transcript text
|
80 |
transcript_text = transcript
|
81 |
-
|
82 |
if not transcript_text.strip():
|
83 |
return "Please provide a transcript or an audio file."
|
84 |
-
|
85 |
-
# Convert transcript to JSON
|
86 |
json_data = convert_to_json(transcript_text)
|
87 |
|
88 |
-
# Prepare the prompt for summarization
|
89 |
prompt = (
|
90 |
"You are a helpful assistant that summarizes psychotherapy sessions. "
|
91 |
"The session is provided in JSON format with speaker turns. "
|
@@ -95,25 +70,20 @@ def analyze_session(transcript, custom_instruction, audio):
|
|
95 |
prompt += f" Additionally, {custom_instruction.strip()}"
|
96 |
prompt += "\n\nJSON data:\n" + str(json_data)
|
97 |
|
98 |
-
# Summarize using the LLM
|
99 |
summary_output = summarizer(prompt, max_length=200, do_sample=False)
|
100 |
summary = summary_output[0]['generated_text'].strip()
|
101 |
-
|
102 |
-
# Sentiment analysis of the entire transcript
|
103 |
sentiment_results = sentiment_analyzer(transcript_text)
|
104 |
main_sentiment = sentiment_results[0]['label']
|
105 |
-
|
106 |
-
# Simple keyword-based recurring concerns
|
107 |
words = transcript_text.lower().split()
|
108 |
keywords_of_interest = ["anxiety", "depression", "relationship", "stress", "fear", "goals", "progress", "cognitive", "behavior"]
|
109 |
-
recurring_concerns = [word for word in words if word in keywords_of_interest]
|
110 |
-
recurring_concerns = list(set(recurring_concerns))
|
111 |
if not recurring_concerns:
|
112 |
recurring_concerns_str = "No specific recurring concerns identified from the predefined list."
|
113 |
else:
|
114 |
recurring_concerns_str = "Recurring concerns include: " + ", ".join(recurring_concerns)
|
115 |
-
|
116 |
-
# Suggest follow-up topics based on summary
|
117 |
follow_up_suggestions = []
|
118 |
if "progress" in summary.lower():
|
119 |
follow_up_suggestions.append("Explore client's perception of progress in more detail.")
|
@@ -122,12 +92,10 @@ def analyze_session(transcript, custom_instruction, audio):
|
|
122 |
if not follow_up_suggestions:
|
123 |
follow_up_suggestions.append("Consider following up on the emotional themes identified in the summary.")
|
124 |
follow_up_suggestions_str = " ".join(follow_up_suggestions)
|
125 |
-
|
126 |
final_output = f"**Summary of Session:**\n{summary}\n\n**Overall Sentiment:** {main_sentiment}\n\n**{recurring_concerns_str}**\n\n**Suggested Follow-Up Topics:** {follow_up_suggestions_str}"
|
127 |
-
|
128 |
return final_output
|
129 |
|
130 |
-
# Build Gradio UI
|
131 |
description = """# Psychotherapy Session Summarizer
|
132 |
|
133 |
This tool summarizes psychotherapy session transcripts (text or audio) into key themes, emotional shifts, and patterns.
|
@@ -142,7 +110,7 @@ with gr.Blocks() as demo:
|
|
142 |
gr.Markdown(description)
|
143 |
with gr.Row():
|
144 |
transcript_input = gr.Textbox(label="Session Transcript (Text)", lines=10, placeholder="Paste the session transcript here...")
|
145 |
-
audio_input = gr.Audio(
|
146 |
custom_instruction_input = gr.Textbox(label="Custom Instruction (Optional)", placeholder="e.g., Focus on anxiety and coping strategies.")
|
147 |
summarize_button = gr.Button("Summarize")
|
148 |
output_box = gr.Markdown()
|
|
|
3 |
import re
|
4 |
|
5 |
# Initialize pipelines
|
|
|
6 |
summarizer = pipeline("text2text-generation", model="google/flan-t5-small", tokenizer="google/flan-t5-small")
|
|
|
|
|
7 |
sentiment_analyzer = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest")
|
|
|
|
|
8 |
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-small")
|
9 |
|
10 |
def convert_to_json(transcript_text):
|
|
|
|
|
|
|
|
|
|
|
11 |
lines = transcript_text.strip().split("\n")
|
12 |
session_data = []
|
13 |
|
|
|
14 |
therapist_pattern = re.compile(r"^\s*(Therapist|T):", re.IGNORECASE)
|
15 |
client_pattern = re.compile(r"^\s*(Client|C):", re.IGNORECASE)
|
16 |
|
|
|
20 |
for line in lines:
|
21 |
line = line.strip()
|
22 |
if therapist_pattern.match(line):
|
|
|
23 |
if current_speaker and current_text:
|
24 |
session_data.append({"speaker": current_speaker, "text": " ".join(current_text).strip()})
|
25 |
current_text = []
|
|
|
26 |
current_speaker = "Therapist"
|
|
|
27 |
text_part = therapist_pattern.sub("", line).strip()
|
28 |
current_text.append(text_part)
|
|
|
29 |
elif client_pattern.match(line):
|
30 |
if current_speaker and current_text:
|
31 |
session_data.append({"speaker": current_speaker, "text": " ".join(current_text).strip()})
|
32 |
current_text = []
|
|
|
33 |
current_speaker = "Client"
|
34 |
text_part = client_pattern.sub("", line).strip()
|
35 |
current_text.append(text_part)
|
|
|
36 |
else:
|
|
|
37 |
if current_speaker is None:
|
|
|
38 |
current_speaker = "Unknown"
|
39 |
current_text.append(line)
|
40 |
|
|
|
41 |
if current_speaker and current_text:
|
42 |
session_data.append({"speaker": current_speaker, "text": " ".join(current_text).strip()})
|
43 |
|
|
|
44 |
if not session_data:
|
45 |
session_data = [{"speaker": "Unknown", "text": transcript_text.strip()}]
|
46 |
|
|
|
47 |
json_data = {"session": session_data}
|
48 |
return json_data
|
49 |
|
50 |
def analyze_session(transcript, custom_instruction, audio):
|
51 |
+
# If an audio file is provided, transcribe it
|
52 |
if audio is not None:
|
53 |
+
# 'audio' will be the file path if type="filepath"
|
54 |
asr_result = asr_pipeline(audio)
|
55 |
transcript_text = asr_result['text']
|
56 |
else:
|
|
|
57 |
transcript_text = transcript
|
58 |
+
|
59 |
if not transcript_text.strip():
|
60 |
return "Please provide a transcript or an audio file."
|
61 |
+
|
|
|
62 |
json_data = convert_to_json(transcript_text)
|
63 |
|
|
|
64 |
prompt = (
|
65 |
"You are a helpful assistant that summarizes psychotherapy sessions. "
|
66 |
"The session is provided in JSON format with speaker turns. "
|
|
|
70 |
prompt += f" Additionally, {custom_instruction.strip()}"
|
71 |
prompt += "\n\nJSON data:\n" + str(json_data)
|
72 |
|
|
|
73 |
summary_output = summarizer(prompt, max_length=200, do_sample=False)
|
74 |
summary = summary_output[0]['generated_text'].strip()
|
75 |
+
|
|
|
76 |
sentiment_results = sentiment_analyzer(transcript_text)
|
77 |
main_sentiment = sentiment_results[0]['label']
|
78 |
+
|
|
|
79 |
words = transcript_text.lower().split()
|
80 |
keywords_of_interest = ["anxiety", "depression", "relationship", "stress", "fear", "goals", "progress", "cognitive", "behavior"]
|
81 |
+
recurring_concerns = list(set([word for word in words if word in keywords_of_interest]))
|
|
|
82 |
if not recurring_concerns:
|
83 |
recurring_concerns_str = "No specific recurring concerns identified from the predefined list."
|
84 |
else:
|
85 |
recurring_concerns_str = "Recurring concerns include: " + ", ".join(recurring_concerns)
|
86 |
+
|
|
|
87 |
follow_up_suggestions = []
|
88 |
if "progress" in summary.lower():
|
89 |
follow_up_suggestions.append("Explore client's perception of progress in more detail.")
|
|
|
92 |
if not follow_up_suggestions:
|
93 |
follow_up_suggestions.append("Consider following up on the emotional themes identified in the summary.")
|
94 |
follow_up_suggestions_str = " ".join(follow_up_suggestions)
|
95 |
+
|
96 |
final_output = f"**Summary of Session:**\n{summary}\n\n**Overall Sentiment:** {main_sentiment}\n\n**{recurring_concerns_str}**\n\n**Suggested Follow-Up Topics:** {follow_up_suggestions_str}"
|
|
|
97 |
return final_output
|
98 |
|
|
|
99 |
description = """# Psychotherapy Session Summarizer
|
100 |
|
101 |
This tool summarizes psychotherapy session transcripts (text or audio) into key themes, emotional shifts, and patterns.
|
|
|
110 |
gr.Markdown(description)
|
111 |
with gr.Row():
|
112 |
transcript_input = gr.Textbox(label="Session Transcript (Text)", lines=10, placeholder="Paste the session transcript here...")
|
113 |
+
audio_input = gr.Audio(type="filepath", label="Session Audio (Optional)")
|
114 |
custom_instruction_input = gr.Textbox(label="Custom Instruction (Optional)", placeholder="e.g., Focus on anxiety and coping strategies.")
|
115 |
summarize_button = gr.Button("Summarize")
|
116 |
output_box = gr.Markdown()
|