Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,83 +1,119 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
This is a Hugging Face Spaces-compatible Gradio app that:
|
8 |
-
- Takes psychotherapy session transcripts (as text input).
|
9 |
-
- Summarizes key themes, emotional tones, and patterns.
|
10 |
-
- Optionally allows custom instructions or focus areas (e.g., "Focus on client's progress since last session").
|
11 |
-
- Utilizes open-source models only.
|
12 |
|
13 |
-
|
14 |
-
-
|
15 |
-
- Sentiment analysis model can be changed if desired.
|
16 |
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
3. Click "Summarize" to generate a concise summary with themes and emotional insights.
|
31 |
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
# For example:
|
47 |
-
prompt = "Summarize the following psychotherapy session transcript, focusing on key themes, emotional shifts, and patterns."
|
48 |
-
if custom_instruction.strip():
|
49 |
-
prompt += " Additionally, " + custom_instruction.strip()
|
50 |
-
prompt += "\n\nTranscript:\n" + transcript.strip()
|
51 |
|
52 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
summary_output = summarizer(prompt, max_length=200, do_sample=False)
|
54 |
summary = summary_output[0]['generated_text'].strip()
|
55 |
|
56 |
-
# Sentiment analysis
|
57 |
-
sentiment_results = sentiment_analyzer(
|
58 |
-
# The sentiment model returns something like: [{'label': 'positive', 'score': ...}]
|
59 |
-
# We'll aggregate the results (though it's a single input) and just pick the top.
|
60 |
main_sentiment = sentiment_results[0]['label']
|
61 |
|
62 |
-
#
|
63 |
-
|
64 |
-
# For a simple first iteration, just provide summary and sentiment.
|
65 |
-
|
66 |
-
# Optional: Identify recurring concerns (simple keyword extraction)
|
67 |
-
# We'll do a naive keyword frequency approach just as a demonstration:
|
68 |
-
words = transcript.lower().split()
|
69 |
-
# Common therapy-related words (just a naive approach, could be replaced by a proper keyword extraction model)
|
70 |
-
# This is a placeholder for demonstration
|
71 |
keywords_of_interest = ["anxiety", "depression", "relationship", "stress", "fear", "goals", "progress", "cognitive", "behavior"]
|
72 |
recurring_concerns = [word for word in words if word in keywords_of_interest]
|
73 |
-
recurring_concerns = list(set(recurring_concerns))
|
74 |
if not recurring_concerns:
|
75 |
recurring_concerns_str = "No specific recurring concerns identified from the predefined list."
|
76 |
else:
|
77 |
recurring_concerns_str = "Recurring concerns include: " + ", ".join(recurring_concerns)
|
78 |
|
79 |
-
#
|
80 |
-
# If certain keywords appear in summary, we can suggest follow-up:
|
81 |
follow_up_suggestions = []
|
82 |
if "progress" in summary.lower():
|
83 |
follow_up_suggestions.append("Explore client's perception of progress in more detail.")
|
@@ -85,10 +121,8 @@ def analyze_session(transcript, custom_instruction):
|
|
85 |
follow_up_suggestions.append("Discuss client's relationship dynamics further.")
|
86 |
if not follow_up_suggestions:
|
87 |
follow_up_suggestions.append("Consider following up on the emotional themes identified in the summary.")
|
88 |
-
|
89 |
follow_up_suggestions_str = " ".join(follow_up_suggestions)
|
90 |
|
91 |
-
# Combine results into a final output
|
92 |
final_output = f"**Summary of Session:**\n{summary}\n\n**Overall Sentiment:** {main_sentiment}\n\n**{recurring_concerns_str}**\n\n**Suggested Follow-Up Topics:** {follow_up_suggestions_str}"
|
93 |
|
94 |
return final_output
|
@@ -96,19 +130,24 @@ def analyze_session(transcript, custom_instruction):
|
|
96 |
# Build Gradio UI
|
97 |
description = """# Psychotherapy Session Summarizer
|
98 |
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
101 |
"""
|
102 |
|
103 |
with gr.Blocks() as demo:
|
104 |
gr.Markdown(description)
|
105 |
with gr.Row():
|
106 |
-
transcript_input = gr.Textbox(label="Session Transcript", lines=10, placeholder="Paste the session transcript here...")
|
107 |
-
|
|
|
108 |
summarize_button = gr.Button("Summarize")
|
109 |
output_box = gr.Markdown()
|
110 |
|
111 |
-
summarize_button.click(fn=analyze_session, inputs=[transcript_input, custom_instruction_input], outputs=output_box)
|
112 |
|
113 |
if __name__ == "__main__":
|
114 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
+
import re
|
4 |
|
5 |
+
# Initialize pipelines
|
6 |
+
# Summarization pipeline with FLAN-T5
|
7 |
+
summarizer = pipeline("text2text-generation", model="google/flan-t5-small", tokenizer="google/flan-t5-small")
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Sentiment analysis pipeline
|
10 |
+
sentiment_analyzer = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest")
|
|
|
11 |
|
12 |
+
# Automatic speech recognition pipeline for audio
|
13 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-small")
|
14 |
|
15 |
+
def convert_to_json(transcript_text):
|
16 |
+
"""
|
17 |
+
Convert the transcript into a structured JSON format.
|
18 |
+
Attempts to identify speaker turns based on lines starting with 'Therapist:' or 'Client:'.
|
19 |
+
If no clear pattern is found, the entire transcript is considered one turn.
|
20 |
+
"""
|
21 |
+
lines = transcript_text.strip().split("\n")
|
22 |
+
session_data = []
|
23 |
+
|
24 |
+
# Regex patterns to identify lines with a speaker
|
25 |
+
therapist_pattern = re.compile(r"^\s*(Therapist|T):", re.IGNORECASE)
|
26 |
+
client_pattern = re.compile(r"^\s*(Client|C):", re.IGNORECASE)
|
27 |
+
|
28 |
+
current_speaker = None
|
29 |
+
current_text = []
|
30 |
+
|
31 |
+
for line in lines:
|
32 |
+
line = line.strip()
|
33 |
+
if therapist_pattern.match(line):
|
34 |
+
# If we have accumulated text from previous speaker, store it
|
35 |
+
if current_speaker and current_text:
|
36 |
+
session_data.append({"speaker": current_speaker, "text": " ".join(current_text).strip()})
|
37 |
+
current_text = []
|
38 |
+
|
39 |
+
current_speaker = "Therapist"
|
40 |
+
# Remove the speaker prefix
|
41 |
+
text_part = therapist_pattern.sub("", line).strip()
|
42 |
+
current_text.append(text_part)
|
43 |
+
|
44 |
+
elif client_pattern.match(line):
|
45 |
+
if current_speaker and current_text:
|
46 |
+
session_data.append({"speaker": current_speaker, "text": " ".join(current_text).strip()})
|
47 |
+
current_text = []
|
48 |
+
|
49 |
+
current_speaker = "Client"
|
50 |
+
text_part = client_pattern.sub("", line).strip()
|
51 |
+
current_text.append(text_part)
|
52 |
+
|
53 |
+
else:
|
54 |
+
# Just text, append to current speaker's segment if identified
|
55 |
+
if current_speaker is None:
|
56 |
+
# No speaker identified yet, assume unknown
|
57 |
+
current_speaker = "Unknown"
|
58 |
+
current_text.append(line)
|
59 |
|
60 |
+
# Append the last collected segment
|
61 |
+
if current_speaker and current_text:
|
62 |
+
session_data.append({"speaker": current_speaker, "text": " ".join(current_text).strip()})
|
63 |
|
64 |
+
# If no speakers identified at all and just one big chunk, still return it as JSON
|
65 |
+
if not session_data:
|
66 |
+
session_data = [{"speaker": "Unknown", "text": transcript_text.strip()}]
|
|
|
67 |
|
68 |
+
# Create a final JSON structure
|
69 |
+
json_data = {"session": session_data}
|
70 |
+
return json_data
|
71 |
|
72 |
+
def analyze_session(transcript, custom_instruction, audio):
|
73 |
+
# If audio is provided, we transcribe it and ignore the text transcript field
|
74 |
+
if audio is not None:
|
75 |
+
# Transcribe audio
|
76 |
+
asr_result = asr_pipeline(audio)
|
77 |
+
transcript_text = asr_result['text']
|
78 |
+
else:
|
79 |
+
# Use the provided transcript text
|
80 |
+
transcript_text = transcript
|
81 |
|
82 |
+
if not transcript_text.strip():
|
83 |
+
return "Please provide a transcript or an audio file."
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
# Convert transcript to JSON
|
86 |
+
json_data = convert_to_json(transcript_text)
|
87 |
+
|
88 |
+
# Prepare the prompt for summarization
|
89 |
+
prompt = (
|
90 |
+
"You are a helpful assistant that summarizes psychotherapy sessions. "
|
91 |
+
"The session is provided in JSON format with speaker turns. "
|
92 |
+
"Summarize the key themes, emotional shifts, and patterns from this session. "
|
93 |
+
)
|
94 |
+
if custom_instruction.strip():
|
95 |
+
prompt += f" Additionally, {custom_instruction.strip()}"
|
96 |
+
prompt += "\n\nJSON data:\n" + str(json_data)
|
97 |
+
|
98 |
+
# Summarize using the LLM
|
99 |
summary_output = summarizer(prompt, max_length=200, do_sample=False)
|
100 |
summary = summary_output[0]['generated_text'].strip()
|
101 |
|
102 |
+
# Sentiment analysis of the entire transcript
|
103 |
+
sentiment_results = sentiment_analyzer(transcript_text)
|
|
|
|
|
104 |
main_sentiment = sentiment_results[0]['label']
|
105 |
|
106 |
+
# Simple keyword-based recurring concerns
|
107 |
+
words = transcript_text.lower().split()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
keywords_of_interest = ["anxiety", "depression", "relationship", "stress", "fear", "goals", "progress", "cognitive", "behavior"]
|
109 |
recurring_concerns = [word for word in words if word in keywords_of_interest]
|
110 |
+
recurring_concerns = list(set(recurring_concerns))
|
111 |
if not recurring_concerns:
|
112 |
recurring_concerns_str = "No specific recurring concerns identified from the predefined list."
|
113 |
else:
|
114 |
recurring_concerns_str = "Recurring concerns include: " + ", ".join(recurring_concerns)
|
115 |
|
116 |
+
# Suggest follow-up topics based on summary
|
|
|
117 |
follow_up_suggestions = []
|
118 |
if "progress" in summary.lower():
|
119 |
follow_up_suggestions.append("Explore client's perception of progress in more detail.")
|
|
|
121 |
follow_up_suggestions.append("Discuss client's relationship dynamics further.")
|
122 |
if not follow_up_suggestions:
|
123 |
follow_up_suggestions.append("Consider following up on the emotional themes identified in the summary.")
|
|
|
124 |
follow_up_suggestions_str = " ".join(follow_up_suggestions)
|
125 |
|
|
|
126 |
final_output = f"**Summary of Session:**\n{summary}\n\n**Overall Sentiment:** {main_sentiment}\n\n**{recurring_concerns_str}**\n\n**Suggested Follow-Up Topics:** {follow_up_suggestions_str}"
|
127 |
|
128 |
return final_output
|
|
|
130 |
# Build Gradio UI
|
131 |
description = """# Psychotherapy Session Summarizer
|
132 |
|
133 |
+
This tool summarizes psychotherapy session transcripts (text or audio) into key themes, emotional shifts, and patterns.
|
134 |
+
|
135 |
+
**How to Use:**
|
136 |
+
- You may upload an audio file of the session or paste the text transcript.
|
137 |
+
- Optionally provide a custom focus or instruction (e.g., "Focus on how the client talks about their anxiety.").
|
138 |
+
- Click 'Summarize' to generate a summary along with identified concerns and suggested follow-ups.
|
139 |
"""
|
140 |
|
141 |
with gr.Blocks() as demo:
|
142 |
gr.Markdown(description)
|
143 |
with gr.Row():
|
144 |
+
transcript_input = gr.Textbox(label="Session Transcript (Text)", lines=10, placeholder="Paste the session transcript here...")
|
145 |
+
audio_input = gr.Audio(source="upload", type="file", label="Session Audio (Optional)")
|
146 |
+
custom_instruction_input = gr.Textbox(label="Custom Instruction (Optional)", placeholder="e.g., Focus on anxiety and coping strategies.")
|
147 |
summarize_button = gr.Button("Summarize")
|
148 |
output_box = gr.Markdown()
|
149 |
|
150 |
+
summarize_button.click(fn=analyze_session, inputs=[transcript_input, custom_instruction_input, audio_input], outputs=output_box)
|
151 |
|
152 |
if __name__ == "__main__":
|
153 |
demo.launch()
|