Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ import numpy as np
|
|
4 |
import pandas as pd
|
5 |
import gradio as gr
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
-
from mne.time_frequency import psd_welch
|
8 |
import torch
|
9 |
|
10 |
# Load LLM
|
@@ -18,6 +17,8 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
18 |
)
|
19 |
|
20 |
def compute_band_power(psd, freqs, fmin, fmax):
|
|
|
|
|
21 |
freq_mask = (freqs >= fmin) & (freqs <= fmax)
|
22 |
band_psd = psd[:, freq_mask].mean()
|
23 |
return float(band_psd)
|
@@ -35,19 +36,16 @@ def inspect_file(file):
|
|
35 |
file_ext = file_ext.lower()
|
36 |
|
37 |
if file_ext == ".fif":
|
38 |
-
# FIF files: MNE compatible, no columns needed
|
39 |
return (
|
40 |
"FIF file detected. No need for time column selection. The file's sampling frequency will be used.",
|
41 |
[],
|
42 |
"FIF file doesn't require column inspection."
|
43 |
)
|
44 |
elif file_ext == ".csv":
|
45 |
-
# Read a small portion of the CSV to determine columns
|
46 |
try:
|
47 |
df = pd.read_csv(file_path, nrows=5)
|
48 |
except Exception as e:
|
49 |
return f"Error reading CSV: {e}", [], "Could not read CSV preview."
|
50 |
-
|
51 |
cols = list(df.columns)
|
52 |
preview = df.head().to_markdown()
|
53 |
return (
|
@@ -62,7 +60,7 @@ def load_eeg_data(file_path, default_sfreq=256.0, time_col='time'):
|
|
62 |
"""
|
63 |
Load EEG data with flexibility.
|
64 |
If FIF: Use MNE's read_raw_fif directly.
|
65 |
-
If CSV:
|
66 |
- If time_col is given and present in the file, use it.
|
67 |
- Otherwise, assume default_sfreq.
|
68 |
"""
|
@@ -79,19 +77,14 @@ def load_eeg_data(file_path, default_sfreq=256.0, time_col='time'):
|
|
79 |
# Use the selected time column to compute sfreq
|
80 |
time = df[time_col].values
|
81 |
data_df = df.drop(columns=[time_col])
|
82 |
-
|
83 |
-
# Drop non-numeric columns
|
84 |
for col in data_df.columns:
|
85 |
if not pd.api.types.is_numeric_dtype(data_df[col]):
|
86 |
data_df = data_df.drop(columns=[col])
|
87 |
|
88 |
if len(time) < 2:
|
89 |
-
# Not enough time points to compute sfreq, fallback
|
90 |
sfreq = default_sfreq
|
91 |
else:
|
92 |
-
# Compute sfreq from time
|
93 |
dt = np.mean(np.diff(time))
|
94 |
-
# Ensure dt is positive
|
95 |
if dt <= 0:
|
96 |
sfreq = default_sfreq
|
97 |
else:
|
@@ -104,13 +97,11 @@ def load_eeg_data(file_path, default_sfreq=256.0, time_col='time'):
|
|
104 |
data_df = df
|
105 |
sfreq = default_sfreq
|
106 |
|
107 |
-
# Ensure sfreq is positive
|
108 |
if sfreq <= 0:
|
109 |
-
sfreq = 256.0
|
110 |
|
111 |
ch_names = list(data_df.columns)
|
112 |
-
data = data_df.values.T #
|
113 |
-
|
114 |
ch_types = ['eeg'] * len(ch_names)
|
115 |
info = mne.create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
|
116 |
raw = mne.io.RawArray(data, info)
|
@@ -130,8 +121,9 @@ def analyze_eeg(file, default_sfreq, time_col):
|
|
130 |
|
131 |
raw = load_eeg_data(file.name, default_sfreq=fs, time_col=time_col)
|
132 |
|
133 |
-
# Use
|
134 |
-
|
|
|
135 |
alpha_power = compute_band_power(psd, freqs, 8, 12)
|
136 |
beta_power = compute_band_power(psd, freqs, 13, 30)
|
137 |
|
@@ -154,11 +146,8 @@ Provide a concise, user-friendly interpretation of these findings in simple term
|
|
154 |
def preview_file(file):
|
155 |
msg, cols, preview = inspect_file(file)
|
156 |
# Always include (No time column) as the first choice
|
157 |
-
# If no columns were found, we still have (No time column) as an option
|
158 |
cols = ["(No time column)"] + cols
|
159 |
default_value = "(No time column)"
|
160 |
-
|
161 |
-
# Return an update dict for the dropdown
|
162 |
return msg, gr.update(choices=cols, value=default_value), preview
|
163 |
|
164 |
with gr.Blocks() as demo:
|
@@ -173,11 +162,14 @@ with gr.Blocks() as demo:
|
|
173 |
file_input = gr.File(label="Upload your EEG data (FIF or CSV)")
|
174 |
preview_button = gr.Button("Inspect File")
|
175 |
msg_output = gr.Markdown()
|
176 |
-
# Allow custom values in case something goes off
|
177 |
cols_dropdown = gr.Dropdown(label="Select Time Column (optional)", allow_custom_value=True, interactive=True)
|
178 |
preview_output = gr.Markdown()
|
179 |
|
180 |
-
preview_button.click(
|
|
|
|
|
|
|
|
|
181 |
|
182 |
default_sfreq_input = gr.Textbox(label="Default Sampling Frequency (Hz) if no time column", value="100")
|
183 |
analyze_button = gr.Button("Run Analysis")
|
|
|
4 |
import pandas as pd
|
5 |
import gradio as gr
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
7 |
import torch
|
8 |
|
9 |
# Load LLM
|
|
|
17 |
)
|
18 |
|
19 |
def compute_band_power(psd, freqs, fmin, fmax):
|
20 |
+
# psd shape: (n_channels, n_freqs)
|
21 |
+
# freqs shape: (n_freqs,)
|
22 |
freq_mask = (freqs >= fmin) & (freqs <= fmax)
|
23 |
band_psd = psd[:, freq_mask].mean()
|
24 |
return float(band_psd)
|
|
|
36 |
file_ext = file_ext.lower()
|
37 |
|
38 |
if file_ext == ".fif":
|
|
|
39 |
return (
|
40 |
"FIF file detected. No need for time column selection. The file's sampling frequency will be used.",
|
41 |
[],
|
42 |
"FIF file doesn't require column inspection."
|
43 |
)
|
44 |
elif file_ext == ".csv":
|
|
|
45 |
try:
|
46 |
df = pd.read_csv(file_path, nrows=5)
|
47 |
except Exception as e:
|
48 |
return f"Error reading CSV: {e}", [], "Could not read CSV preview."
|
|
|
49 |
cols = list(df.columns)
|
50 |
preview = df.head().to_markdown()
|
51 |
return (
|
|
|
60 |
"""
|
61 |
Load EEG data with flexibility.
|
62 |
If FIF: Use MNE's read_raw_fif directly.
|
63 |
+
If CSV:
|
64 |
- If time_col is given and present in the file, use it.
|
65 |
- Otherwise, assume default_sfreq.
|
66 |
"""
|
|
|
77 |
# Use the selected time column to compute sfreq
|
78 |
time = df[time_col].values
|
79 |
data_df = df.drop(columns=[time_col])
|
|
|
|
|
80 |
for col in data_df.columns:
|
81 |
if not pd.api.types.is_numeric_dtype(data_df[col]):
|
82 |
data_df = data_df.drop(columns=[col])
|
83 |
|
84 |
if len(time) < 2:
|
|
|
85 |
sfreq = default_sfreq
|
86 |
else:
|
|
|
87 |
dt = np.mean(np.diff(time))
|
|
|
88 |
if dt <= 0:
|
89 |
sfreq = default_sfreq
|
90 |
else:
|
|
|
97 |
data_df = df
|
98 |
sfreq = default_sfreq
|
99 |
|
|
|
100 |
if sfreq <= 0:
|
101 |
+
sfreq = 256.0
|
102 |
|
103 |
ch_names = list(data_df.columns)
|
104 |
+
data = data_df.values.T # (n_channels, n_samples)
|
|
|
105 |
ch_types = ['eeg'] * len(ch_names)
|
106 |
info = mne.create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
|
107 |
raw = mne.io.RawArray(data, info)
|
|
|
121 |
|
122 |
raw = load_eeg_data(file.name, default_sfreq=fs, time_col=time_col)
|
123 |
|
124 |
+
# Use raw.compute_psd instead of psd_welch
|
125 |
+
psd_obj = raw.compute_psd(fmin=1, fmax=40, method='welch')
|
126 |
+
psd, freqs = psd_obj.get_data(return_freqs=True)
|
127 |
alpha_power = compute_band_power(psd, freqs, 8, 12)
|
128 |
beta_power = compute_band_power(psd, freqs, 13, 30)
|
129 |
|
|
|
146 |
def preview_file(file):
|
147 |
msg, cols, preview = inspect_file(file)
|
148 |
# Always include (No time column) as the first choice
|
|
|
149 |
cols = ["(No time column)"] + cols
|
150 |
default_value = "(No time column)"
|
|
|
|
|
151 |
return msg, gr.update(choices=cols, value=default_value), preview
|
152 |
|
153 |
with gr.Blocks() as demo:
|
|
|
162 |
file_input = gr.File(label="Upload your EEG data (FIF or CSV)")
|
163 |
preview_button = gr.Button("Inspect File")
|
164 |
msg_output = gr.Markdown()
|
|
|
165 |
cols_dropdown = gr.Dropdown(label="Select Time Column (optional)", allow_custom_value=True, interactive=True)
|
166 |
preview_output = gr.Markdown()
|
167 |
|
168 |
+
preview_button.click(
|
169 |
+
preview_file,
|
170 |
+
inputs=[file_input],
|
171 |
+
outputs=[msg_output, cols_dropdown, preview_output]
|
172 |
+
)
|
173 |
|
174 |
default_sfreq_input = gr.Textbox(label="Default Sampling Frequency (Hz) if no time column", value="100")
|
175 |
analyze_button = gr.Button("Run Analysis")
|